related publicationsnews for researchers and professionals

References Published in 2014

(May 13, 2015 Updated)
1 Basu, S., Krol, M., Butz, A., Clerbaux, C., Sawa, Y., Machida, T., Matsueda, H., Frankenberg, C., Hasekamp, O. P., and Aben, I.: The seasonal variation of the CO2 flux over Tropical Asia estimated from GOSAT, CONTRAIL, and IASI, Geophys. Res. Lett., 41, 1809-1815, doi:10.1002/2013GL059105, 2014.
2 Belikov, D. A., Bril, A., Maksyutov, S., Oshchepkov, S., Saeki, T., Takagi, H., Yoshida, Y., Ganshin, A., Zhuravlev, R., Aoki, S., and Yokota, T.: Column-averaged CO2 concentrations in the subarctic from GOSAT retrievals and NIES transport model simulations, Polar Science, 8, 129-145, doi:10.1016/j.polar.2014.02.002, 2014.
3 Butzin, M., Werner, M., Masson-Delmotte, V., Risi, C., Frankenberg, C., Gribanov, K., Jouzel, J., and Zakharov, V. I.: Variations of oxygen-18 in West Siberian precipitation during the last 50 years, Atmos. Chem. Phys., 14, 5853-5869, doi:10.5194/acp-14-5853-2014, 2014.
4 Chevallier, F., Palmer, P. I., Feng, L., Boesch, H., O’Dell, C. W., and Bousquet, P.: Toward robust and consistent regional CO2 flux estimates from in situ and spaceborne measurements of atmospheric CO2, Geophys. Res. Lett., 41, 1065-1070, doi:10.1002/2013GL058772, 2014.
5 Choi, J. H., Joo, S. M., Um, J. S.: Cross-Correlation Analysis between GOSAT and CO2 Concentration Observed by the KGAWC Station, Journal of Korean Society for Geospatial Information System, 22, 11-16, doi:10.7319/kogsis.2014.22.2.011, 2014.
6 Cressot, C., Chevallier, F., Bousquet, P., Crevoisier, C., Dlugokencky, E. J., Fortems-Cheiney, A., Frankenberg, C., Parker, R., Pison, I., Scheepmaker, R. A., Montzka, S. A., Krummel, P. B., Steele, L. P., and Langenfelds, R. L.: On the consistency between global and regional methane emissions inferred from SCIAMACHY, TANSO-FTS, IASI and surface measurements, Atmos. Chem. Phys., 14, 577-592, doi:10.5194/acp-14-577-2014, 2014.
7 Deng, F., Jones, D. B. A., Henze, D. K., Bousserez, N., Bowman, K. W., Fisher, J. B., Nassar, R., O’Dell, C., Wunch, D., Wennberg, P. O., Kort, E. A., Wofsy, S. C., Blumenstock, T., Deutscher, N. M., Griffith, D. W. T., Hase, F., Heikkinen, P., Sherlock, V., Strong, K., Sussmann, R., and Warneke, T.: Inferring regional sources and sinks of atmospheric CO2 from GOSAT XCO2 data, Atmos. Chem. Phys., 14, 3703-3727, doi:10.5194/acp-14-3703-2014, 2014.
8 Deng, J., Liu, Y., Yang, D., and Cai, Z.: CH4 retrieval from hyperspectral satellite measurements in short-wave infrared: sensitivity study and preliminary test with GOSAT data, Chinese Sci. Bull., 59, 1499-1507, doi:10.1007/s11434-014-0245-2, 2014.
9 Dils, B., Buchwitz, M., Reuter, M., Schneising, O., Boesch, H., Parker, R., Guerlet, S., Aben, I., Blumenstock, T., Burrows, J. P., Butz, A., Deutscher, N. M., Frankenberg, C., Hase, F., Hasekamp, O. P., Heymann, J., De Mazière, M., Notholt, J., Sussmann, R., Warneke, T., Griffith, D., Sherlock, V., and Wunch, D.: The Greenhouse Gas Climate Change Initiative (GHG-CCI): comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO2 and CH4 retrieval algorithm products with measurements from the TCCON, Atmos. Meas. Tech., 7, 1723-1744, doi:10.5194/amt-7-1723-2014, 2014.
10 Frankenberg, C., O’Dell, C., Berry, J., Guanter, L., Joiner, J., Kohler, P., Pollock, R., and E. Taylor, T.: Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2, Remote Sens. Environ., 147, 1-12, doi:10.1016/j.rse.2014.02.007, 2014.
11 Fraser, A., Palmer, P. I., Feng, L., Bösch, H., Parker, R., Dlugokencky, E. J., Krummel, P. B., and Langenfelds, R. L.: Estimating regional fluxes of CO2 and CH4 using space-borne observations of XCH4: XCO2, Atmos. Chem. Phys., 14, 12883-12895, doi:10.5194/acp-14-12883-2014, 2014.
12 Galli, A., Guerlet, S., Butz, A., Aben, I., Suto, H., Kuze, A., Deutscher, N. M., Notholt, J., Wunch, D., Wennberg, P. O., Griffith, D. W. T., Hasekamp, O., and Landgraf, J.: The impact of spectral resolution on satellite retrieval accuracy of CO2 and CH4, Atmos. Meas. Tech., 7, 1105-1119, doi:10.5194/amt-7-1105-2014, 2014.
13 Gavrilov, N. M., Makarova, M. V., Timofeyev, Y. M., and Poberovskii, A. V.: Comparisons of satellite (GOSAT) and ground-based spectroscopic measurements of CH4 content near Saint Petersburg: influence of data collocation, Int. J. Remote Sens., 35, 5628-5636, doi:10.1080/01431161.2014.945006, 2014.
14 Gavrilov, N. M., Makarova, M. V., Timofeev, Y. M., and Poberovsky, A. V.: Comparisons of CH4 ground-based FTIR measurements near Saint Petersburg with GOSAT observations, Atmos. Meas. Tech., 7, 1003-1010, doi:10.5194/amt-7-1003-2014, 2014.
15 Gavrilov, N. M., and Timofeev, Yu. M.: Comparisons of satellite (GOSAT) and ground-based spectroscopic measurements of CO2 content near St. Petersburg, Izv. Atmos. Ocean. Phy+., 50, 910-915, doi:10.1134/S0001433814090084, 2014.
16 Gryazin, V., Risi, C., Jouzel, J., Kurita, N., Worden, J., Frankenberg, C., Bastrikov, V., Gribanov, K., and Stukova, O.: To what extent could water isotopic measurements help us understand model biases in the water cycle over Western Siberia, Atmos. Chem. Phys., 14, 9807-9830, doi:10.5194/acp-14-9807-2014, 2014.
17 Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J. A., Frankenberg, C., Huete, A. R., Zarco-Tejada, P., Lee, J.-E., Moran, M. S., Ponce-Campos, G., Beer, C., Camps-Valls, G., Buchmann, N., Gianelle, D., Klumpp, K., Cescatti, A., Baker, J. M., and Griffis, T. J.: Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence, P. Natl. Acad. Sci. USA., 111, E1327-E1333, doi:10.1073/pnas.1320008111, 2014.
18 Houweling, S., Krol, M., Bergamaschi, P., Frankenberg, C., Dlugokencky, E. J., Morino, I., Notholt, J., Sherlock, V., Wunch, D., Beck, V., Gerbig, C., Chen, H., Kort, E. A., Röckmann, T., and Aben, I.: A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements, Atmos. Chem. Phys., 14, 3991-4012, doi:10.5194/acp-14-3991-2014, 2014.
19 Inoue, M., Morino, I., Uchino, O., Miyamoto, Y., Saeki, T., Yoshida, Y., Yokota, T., Sweeney, C., Tans, P. P., Biraud, S. C., Machida, T., Pittman, J. V., Kort, E. A., Tanaka, T., Kawakami, S., Sawa, Y., Tsuboi, K., and Matsueda, H.: Validation of XCH4 derived from SWIR spectra of GOSAT TANSO-FTS with aircraft measurement data, Atmos. Meas. Tech., 7, 2987-3005, doi:10.5194/amt-7-2987-2014, 2014.
20 Jing, Y., Shi, J., Wang, T., and Sussmann, R.: Mapping Global Atmospheric CO2 Concentration at High Spatiotemporal Resolution, Atmosphere, 5, 870-888, doi:10.3390/atmos5040870, 2014.
21 Kataoka, F., Knuteson, R., Kuze, A., Suto, H., Shiomi, K., Harada, M., Garms, E., Roman, J., Tobin, D., Taylor, J., Revercomb, H., Sekio, N., Higuchi, R., and Mitomi, Y.: TIR Spectral Radiance Calibration of the GOSAT Satellite Borne TANSO-FTS with the Aircraft-Based S-HIS and the Ground-Based S-AERI at the Railroad Valley Desert Playa, IEEE T. Geosci. Remote, 52, 89-105, doi:10.1109/TGRS.2012.2236561, 2014.
22 Kuze, A., Taylor, T., Kataoka, F., Bruegge, C., Crisp, D., Harada, M., Helmlinger, M., Inoue, M., Kawakami, S., Kikuchi, N., Mitomi, Y., Murooka, J., Naitoh, M., O’Brien, D., O’Dell, C., Ohyama, H., Pollock, H., Schwandner, F., Shiomi, K., Suto, H., Takeda, T., Tanaka, T., Urabe, T., Yokota, T., and Yoshida, Y.: Long-Term Vicarious Calibration of GOSAT Short-Wave Sensors: Techniques for Error Reduction and New Estimates of Radiometric Degradation Factors, IEEE T. Geosci. Remote, 52, 3991-4004, doi:10.1109/TGRS.2013.2278696, 2014.
23 Laurenza, L., Del Bianco, S., Gai, M., Barbara, F., Schiavon, G., and Cortesi, U.: Comparison of Column-Averaged Volume Mixing Ratios of Carbon Dioxide Retrieved From IASI/METOP-A Using KLIMA Algorithm and TANSO-FTS/GOSAT Level 2 Products, IEEE J. Sel. Top. Appl., 7, 389-398, doi:10.1109/JSTARS.2013.2276125, 2014.
24 Lei, L., Guan, X., Zeng, Z., Zhang, B., Ru, F., and Bu, R.: A comparison of atmospheric CO2 concentration GOSAT-based observations and model simulations, Sci. China Ser. D, 57, 1393-1402, doi:10.1007/s11430-013-4807-y, 2014.
25 Liu, J., Bowman, K., Lee, M., Henze, D., Bousserez, N., Brix, H., Collatz, G. J., Menemenlis, D., Ott, L., Pawson, S., Jones, D., and Nassar, R.: Carbon monitoring system flux estimation and attribution: impact of ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric sources and sinks, Tellus B, 66, doi:10.3402/tellusb.v66.22486, 2014.
26 Makarova, M. V., Gavrilov, N. M., Timofeev, Yu. M., and Poberovskii, A. V.: Comparisons of satellite (GOSAT) and ground-based Fourier spectroscopic measurements of methane content near St. Petersburg, Izv. Atmos. Ocean. Phy+., 50, 904-909, doi:10.1134/S0001433814090138, 2014.
27 Massart, S., Agusti-Panareda, A., Aben, I., Butz, A., Chevallier, F., Crevoisier, C., Engelen, R., Frankenberg, C., and Hasekamp, O.: Assimilation of atmospheric methane products into the MACC-II system: from SCIAMACHY to TANSO and IASI, Atmos. Chem. Phys., 14, 6139-6158, doi:10.5194/acp-14-6139-2014, 2014.
28 Nassar, R., Sioris, C. E., Jones, D. B. A., and McConnell, J. C.: Satellite observations of CO2 from a highly elliptical orbit for studies of the Arctic and boreal carbon cycle, J. Geophys. Res.-Atmos., 119, 2654-2673, doi:10.1002/2013JD020337, 2014.
29 Nguyen, H., Osterman, G., Wunch, D., O’Dell, C., Mandrake, L., Wennberg, P., Fisher, B., and Castano, R.: A method for colocating satellite XCO2 data to ground-based data and its application to ACOS-GOSAT and TCCON, Atmos. Meas. Tech., 7, 2631-2644, doi:10.5194/amt-7-2631-2014, 2014.
30 Nguyen, H., Katzfuss, M., Cressie, N., and Braverman, A.: Spatio-temporal data fusion for very large remote sensing datasets, Technometrics, 56, 174-185, doi:10.1080/00401706.2013.831774, 2014.
31 Parazoo, N. C., Bowman, K., Fisher, J. B., Frankenberg, C., Jones, D. B. A., Cescatti, A., Pérez-Priego, Ó., Wohlfahrt, G., and Montagnani, L.: Terrestrial gross primary production inferred from satellite fluorescence and vegetation models, Glob. Change Biol., 20, 3103-3121, doi:10.1111/gcb.12652, 2014.
32 Prasad, P., Rastogi, S., and Singh, R.P.: Study of satellite retrieved CO2 and CH4 concentration over India, Adv. Space Res., 54, 1933-1940, doi:10.1016/j.asr.2014.07.021, 2014.
33 Reuter, M., Buchwitz, M.,Hilker, M., Heymann, J., Schneising, O., Pillai, D., Bovensmann, H., Burrows, J. P., Bösch, H., Parker, R., Butz, A., Hasekamp, O., O’Dell, C. W., Yoshida, Y., Gerbig, C., Nehrkorn, T., Deutscher, N. M., Warneke, T., Notholt, J., Hase, F., Kivi, R., Sussmann, R., Machida, T., Matsueda, H., and Sawa, Y.: Satellite-inferred European carbon sink larger than expected, Atmos. Chem. Phys., 14, 13739-13753, doi:10.5194/acp-14-13739-2014, 2014.
34 Ricaud, P., Sič, B., El Amraoui, L., Attié, J.-L., Zbinden, R., Huszar, P., Szopa, S., Parmentier, J., Jaidan, N., Michou, M., Abida, R., Carminati, F., Hauglustaine, D., August, T., Warner, J., Imasu, R., Saitoh, N., and Peuch, V.-H.: Impact of the Asian monsoon anticyclone on the variability of mid-to-upper tropospheric methane above the Mediterranean Basin, Atmos. Chem. Phys., 14, 11427-11446, doi:10.5194/acp-14-11427-2014, 2014.
35 Tadic, J. M., Loewenstein, M., Frankenberg, C., Butz, A., Roby, M., Iraci, L. T., Yates, E. L., Gore, W., and Kuze, A.: A Comparison of In Situ Aircraft Measurements of Carbon Dioxide and Methane to GOSAT Data Measured Over Railroad Valley Playa, Nevada, USA, IEEE T. Geosci. Remote, 52, 7764-7774, doi:10.1109/TGRS.2014.2318201, 2014.
36 Takagi, H., Houweling, S., Andres, R. J., Belikov, D., Bril, A., Boesch, H., Butz, A., Guerlet, S., Hasekamp, O., Maksyutov, S., Morino, I., Oda, T., O’Dell, C. W., Oshchepkov, S., Parker, R., Saito, M., Uchino, O., Yokota, T., Yoshida, Y., and Valsala, V.: Influence of differences in current GOSAT XCO2 retrievals on surface flux estimation, Geophys. Res. Lett., 41, 2598-2605, doi:10.1002/2013GL059174, 2014.
37 Tian, X., Xie, Z., Liu, Y., Cai, Z., Fu, Y., Zhang, H., Feng, L.: A joint data assimilation system (Tan-Tracker) to simultaneously estimate surface CO2 fluxes and 3-D atmospheric CO2 concentrations from observations, Atmos. Chem. Phys., 14, 13281-13293, doi:10.5194/acp-14-13281-2014, 2014.
38 Uchino, O., Sakai, T., Nagai, T., Morino, I., Maki, T., Deushi, M., Shibata, K., Kajino, M., Kawasaki, T., Akaho, T., Takubo, S., Okumura, H., Arai, K., Nakazato, M., Matsunaga, T., Yokota, T., Kawakami, S., Kita, K., and Sasano, Y.: DIAL measurement of lower tropospheric ozone over Saga (33.24° N, 130.29° E), Japan, and comparison with a chemistry-climate model, Atmos. Meas. Tech., 7, 1385-1394, doi:10.5194/amt-7-1385-2014, 2014.
39 Wang, T., Shi, J., Jing, Y., Zhao, T., Ji, D., and Xiong, C.: Combining XCO2 measurements derived from SCIAMACHY and GOSAT for potentially generating global CO2 maps with high spatiotemporal resolution, PloS ONE, 9, e105050, doi:10.1371/journal.pone.0105050, 2014.
40 Wecht, K. J., Jacob, D. J., Sulprizio, M. P., Santoni, G. W., Wofsy, S. C., Parker, R., Bösch, H., and Worden, J.: Spatially resolving methane emissions in California: constraints from the CalNex aircraft campaign and from present (GOSAT, TES) and future (TROPOMI, geostationary) satellite observations, Atmos. Chem. Phys., 14, 8173-8184, doi:10.5194/acp-14-8173-2014, 2014.
41 Wei, J., Savtchenko, A., Vollmer, B., Hearty, T., Albayrak, A., Crisp, D., and Eldering, A.: Advances in CO2 Observations From AIRS and ACOS, IEEE Geosci. Remote Sens. Lett., 11, 891-895, doi:10.1109/LGRS.2013.2281147, 2014.
42 Zeng, Z., Lei, L., Hou, S., Ru, F., Guan, X., and Zhang, B.: A Regional Gap-Filling Method Based on Spatiotemporal Variogram Model of CO2 Columns, IEEE T. Geosci. Remote, 52, 3594-3603, doi:10.1109/TGRS.2013.2273807, 2014.
43 Zhang, L., Xiao, J., Li, L., Lei, L., and Li, J.: China’s sizeable and uncertain carbon sink: a perspective from GOSAT, Chinese Sci. Bull., 59, 1547-1555, doi:10.1007/s11434-014-0260-3, 2014.