Validation Plan (of GOSAT TANSO Standard Products)

Isamu Morino

National Institute for Environmental Studies (NIES), Tsukuba, Ibaraki 305-8506, Japan

Workshop on

the Data Utilization of Greenhouse gases Observing SATellite (GOSAT) "IBUKI" Tokyo, November 5, 2008

Definition of validation

Validation

to evaluate uncertainties of GOSAT products with other data of less uncertainties acquired independently

Comparison

to evaluate GOSAT products with observation data with equivalent uncertainties or data estimated by simulation models

Calibration

to evaluate L1 product which is performed mainly by JAXA

Uncertainty= ${(accuracy)^2 + (precision))^2}^{1/2}$

Basic Concept of GOSAT Validation

- ➤ The priorities of standard product validation and comparison have been set as follows:
 - (1) L2 SWIR CO₂ and CH₄ column abundances
 - (2) L2 TIR CO₂ vertical profile of concentration
 - (3) Global distributions of L3 SWIR CO₂ and CH₄ column abundances
 - (4) Global distribution of L4A CO₂ flux
 - (5) Global distribution of L4B CO2 concentration

Strategy for validation of GOSAT CO₂ and CH₄ column abundances

> Requirement for observation equipments

- ✓ Well established observation technology
- ✓ Small uncertainty; CO₂ less than 1% (0.3% preferable), CH₄ less than 2%

➤ Measurement technique to validate these products

- ✓ Absorption technique of solar direct radiation by ground-based high resolution FTS (0.05-0.015 cm⁻¹) and mobile FTS (around 0.2 cm⁻¹)
- ✓ Aircraft in situ measurement (e.g. JAL project data)

To validate TIR products, vertical profiles of temperature, pressure, and water vapor obtained by Rawin Sonde are useful.

Methodology of validation of L2 products

Collect data at various conditions

✓ Albedo : grassland, forest, desert, snow surface, urban, sea surface

✓ Terrain : flat or complex

✓ Aerosol : sea salt, dust, artificial sulfuric acid, black carbon, organic carbon

✓ Cirrus : thick or thin

✓ Water vapor : high or low

Continuously observing sites (ground-based high-resolution FTS: about 10 sites, JAL project: 10 airports) for validation (under consideration)

*Considering points: required quality level and cost effective

- > Set up necessary instruments at continuously observing sites (e.g. FTS, lidar and sky radiometer)
- > Evaluation of spatial and temporal characteristics at each FTS site
 - → Identify the accuracy of GOSAT L2 products (It will take much time for evaluating the bias. 3 months for Lauder?)
 - → Grouping (cirrus, aerosol, water vapor, albedo and etc.)

Other methods

e.g. Trajectory analysis, Regional CO2 forward model

Error factors in deriving XCO2 and XCH4

Priority	Error factor	Methodology	
**	Characteristics of TANSO FTS (e.g. SNR)	Calibration	
**	Aerosol	Validation	
*	Thin cirrus	Validation	
*	Surface pressure (elevation)	Validation	
*	Profiles of P, T and R.H.	Validation	
*	Absorption line	Algorithm	
*	Fraunhofer line	Algorithm	
*	Surface albedo (sunglint reflectance)	Validation	

^{**:} the top priority, *: the second priority.

Schematic illustration of validation experiments

Source: GOSAT pamphlet

The uncertainty of the ground based high resolution FTS (Park Falls)

Washenfelder, R. A., et al. (2006), J. Geophys. Res., 111, D22305, doi:10.1029/2006JD007154.

> The precision of FTS column CO2

Clear day → about 0.1% Partly cloudy day → about 0.2%

➤ The bias of FTS column CO₂ compared to integrated aircraft profiles

less than 2%

➤ The uncertainty of FTS column average CO₂ VMR after calibration

about 0.3% (±1.1 ppmv) at SZA less than 60 deg

The high resolution FTS is useful for GOSAT validation. It is necessary to calibrate the FTS at validation sites.

TCCON is indispensable for GOSAT validation

: will be used for initial validation

TCCON: Total Carbon Column Network (http://www.tccon.caltech.edu/index.html)

Observation plan of cloud and aerosol parameters at some potential FTS sites for GOSAT validation

Instrum.	FTS	Lidar	Sky	Sun
			Radiometer	Photometer
Site				
Tsukuba	Bruker 120HR	Observed	Observed	None
	(NIES)	by NIES & MRI	by MRI	
Moshiri	Bruker 120HR (Nagoya U.)	To be installed	To be installed (NIES's)	None
Lauder	Bruker 120HR (NIWA)	To be upgraded (MRI & NIES)	None	CSD Middleton SP02 (ABM)
Bremen	Bruker 125 HR (U. Bremen)	Seeking the fund to install	To be installed (NIES's)	None
Darwin	Bruker 125 HR	Small power lidar (ARM site)	None	Cimel (ARM site)
etc.				

Lidar: two-wavelength polarization lidar

The site conditions of Tsukuba FTS

The site conditions of Tsukuba FTS

Ground-based NIR FTS at Tsukuba

Observation site
 National Institute for Environmental Studies (NIES),
 Tsukuba, Japan
 (Latitude 36.1° N, Longitude 140.1° E, Altitude 31 m)

 FTS: Bruker IFS 120 HR Beam splitter: CaF₂

Detector: InSb (1,800–10,500 cm⁻¹)

Si diode (9,200–14,000 cm⁻¹)

Instrument resolution: 0.05-0.0035 cm⁻¹

Observation time: ~10 min

- In 2001, measurements of atmospheric constituents related with the destruction of the ozone layer were started in MIR region.
- In 2004, optical components of the FTS were replaced for measuring greenhouse gases such as CO₂ and CH₄ in NIR: optical filters, CaF₂ beam splitter, and InSb detector.

However, in the present, measurements with the NDSC #1, #2, and #3 optical filters are also in operation.

XNIES NIR FTS will be joined to TCCON

Airborne observation data is very useful for GOSAT validation

JAL flight routes of CO₂ observation and destination airport. The numbers indicate the number of vertical profiles over each airport from November 2005 to April 2007.

Vertical CO₂ profiles obtained by CME on board aircraft (JAL)

Similar profiles : Nagoya, Kansai

Similar profiles: Sydney, LA

Data for estimation of XCO₂

- •in situ CO₂ data obtained by descending JAL aircraft (1,500~12,418 m) (Narita airport 2006/10/26)
- Tateno rawin sonde data
 PBL height: 1,000 m
 Tropopause height: 17,227 m
- •CO₂ data from ground to PBL in situ data of MRI/JMA tower (200m) (by Machida)
- •CO₂ data above 20km assumed nearly equal to the average value in troposphere 5 years ago (371.7 ppm)

 $X_{CO2} = 380.079 \text{ ppm}$

Validation for GOSAT sunglint observation

Observation area: Sagami-bay (35.0-35.1ºN, 139.2-139.4ºE)

Sampling altitude: 0.5, 1, 1.5, 2, 3, 4, 5.5, 7 km

Sampling method: Flask sampling → Nadir

Observation schedule: every 2 weeks

Beechcraft 200T

[T. Machida, NIES]

Validation of aerosol and cirrus cloud

> Error factors to the column abundance

- ✓ Aerosol and thin cirrus cloud
- ✓ It is necessary to observe these factors with CO₂ and CH₄ column abundances at the same time.

> Lidar

- Derive the vertical distributions of aerosols and thin cirrus clouds with a range resolution of 15 m.
- Derive depolarization ratio with high accuracy, and discriminate liquid and solid particles.

Skyradiometer

- Derive optical depth, particle size distribution and phase function with measurements of direct solar radiation and forward scattering.
- Derive Single-scattering albedo and phase function with these parameters.

To validate TANSO-CAI, measurements by lidar and skyradiometer are useful. SKYNET and AERONET data are also important for GOSAT validation.

Summary

- Ground-based high resolution FTS data are indispensable for validation of CO₂ and CH₄ column abundances retrieved from GOSAT data.
- Airborne in-situ measurement data are also important for validation of column abundances and vertical profiles of CO₂ and CH₄.
- Aerosol and thin cirrus cloud measurements at FTS sites are necessary to validate and improve GOSAT CO₂ and CH₄ column abundances.