関連文献

2015年発表

(2015年5月13日更新)
1 Alexe, M., Bergamaschi, P., Segers, A., Detmers, R., Butz, A., Hasekamp, O., Guerlet, S., Parker, R., Boesch, H., Frankenberg, C., Scheepmaker, R. A., Dlugokencky, E., Sweeney, C., Wofsy, S. C., Kort, E. A.: Inverse modelling of CH4 emissions for 2010-2011 using different satellite retrieval products from GOSAT and SCIAMACHY, Atmos. Chem. Phys., 15, 113-133, doi:10.5194/acp-15-113-2015, 2015.
2 Geddes, A., and Bösch, H.: Tropospheric aerosol profile information from high-resolution oxygen A-band measurements from space, Atmos. Meas. Tech., 8, 859-874, doi:10.5194/amt-8-859-2015, 2015.
3 Guo, L., Lei, L., Zeng, Z., Zou, P., Liu, D., and Zhang, B.: Evaluation of Spatio-Temporal Variogram Models for Mapping XCO2 Using Satellite Observations: A Case Study in China, IEEE J. Sel. Top. Appl., 8, 376-385, doi:10.1109/JSTARS.2014.2363019, 2015.
4 Nikitin, A. V., Lyulin, O. M., Mikhailenko, S. N., Perevalov, V. I., Filippov, N. N., Grigoriev, I. M., Morino, I., Yoshida, Y., and Matsunaga, T.: GOSAT-2014 methane spectral line list, J. Quant. Spectrosc. Ra., 154, 63 - 71, doi:10.1016/j.jqsrt.2014.12.003, 2015.
5 Ott, L. E., Pawson, S., Collatz, G. J., Gregg, W. W., Menemenlis, D., Brix, H., Rousseaux, C. S., Bowman, K. W., Liu, J., Eldering, A., Gunson, M. R., and Kawa, S. R.: Assessing the magnitude of CO2 flux uncertainty in atmospheric CO2 records using products from NASA's Carbon Monitoring Flux Pilot Project, J. Geophys. Res.-Atmos., 120, 734-765, doi:10.1002/2014JD022411, 2015.
6 Peng, Z., Zhang, M., Kou, X., Tian, X., and Ma, X.: A regional carbon data assimilation system and its preliminary evaluation in East Asia, Atmos. Chem. Phys., 15, 1087-1104, doi:10.5194/acp-15-1087-2015, 2015.
7 Watanabe, H., Hayashi, K., Saeki, T., Maksyutov, S., Nasuno, I., Shimono, Y., Hirose, Y., Takaichi, K., Kanekon, S., Ajiro, M., Matsumoto, Y., and Yokota, T.: Global mapping of greenhouse gases retrieved from GOSAT Level 2 products by using a kriging method, Int. J. Remote Sens., 36, 1509-1528, doi:10.1080/01431161.2015.1011792, 2015.
8 Zhang, H., Chen, B., Xu, G., Yan, J., Che, M., Chen, J., Fang, S., Lin, X., and Sun, S.: Comparing simulated atmospheric carbon dioxide concentration with GOSAT retrievals, Science Bulletin, 60, 380-386, doi:10.1007/s11434-014-0676-9, 2015.
9 Zhang, L., Jiang, H., and Zhang, X.: Comparison analysis of the global carbon dioxide concentration column derived from SCIAMACHY, AIRS, and GOSAT with surface station measurements, Int. J. Remote. Sens., 36, 1406-1423, doi:10.1080/01431161.2015.1009656, 2015.

2014年発表

(2015年5月13日更新)
1 Basu, S., Krol, M., Butz, A., Clerbaux, C., Sawa, Y., Machida, T., Matsueda, H., Frankenberg, C., Hasekamp, O. P., and Aben, I.: The seasonal variation of the CO2 flux over Tropical Asia estimated from GOSAT, CONTRAIL, and IASI, Geophys. Res. Lett., 41, 1809-1815, doi:10.1002/2013GL059105, 2014.
2 Belikov, D. A., Bril, A., Maksyutov, S., Oshchepkov, S., Saeki, T., Takagi, H., Yoshida, Y., Ganshin, A., Zhuravlev, R., Aoki, S., and Yokota, T.: Column-averaged CO2 concentrations in the subarctic from GOSAT retrievals and NIES transport model simulations, Polar Science, 8, 129-145, doi:10.1016/j.polar.2014.02.002, 2014.
3 Butzin, M., Werner, M., Masson-Delmotte, V., Risi, C., Frankenberg, C., Gribanov, K., Jouzel, J., and Zakharov, V. I.: Variations of oxygen-18 in West Siberian precipitation during the last 50 years, Atmos. Chem. Phys., 14, 5853-5869, doi:10.5194/acp-14-5853-2014, 2014.
4 Chevallier, F., Palmer, P. I., Feng, L., Boesch, H., O'Dell, C. W., and Bousquet, P.: Toward robust and consistent regional CO2 flux estimates from in situ and spaceborne measurements of atmospheric CO2, Geophys. Res. Lett., 41, 1065-1070, doi:10.1002/2013GL058772, 2014.
5 Choi, J. H., Joo, S. M., Um, J. S.: Cross-Correlation Analysis between GOSAT and CO2 Concentration Observed by the KGAWC Station, Journal of Korean Society for Geospatial Information System, 22, 11-16, doi:10.7319/kogsis.2014.22.2.011, 2014.
6 Cressot, C., Chevallier, F., Bousquet, P., Crevoisier, C., Dlugokencky, E. J., Fortems-Cheiney, A., Frankenberg, C., Parker, R., Pison, I., Scheepmaker, R. A., Montzka, S. A., Krummel, P. B., Steele, L. P., and Langenfelds, R. L.: On the consistency between global and regional methane emissions inferred from SCIAMACHY, TANSO-FTS, IASI and surface measurements, Atmos. Chem. Phys., 14, 577-592, doi:10.5194/acp-14-577-2014, 2014.
7 Deng, F., Jones, D. B. A., Henze, D. K., Bousserez, N., Bowman, K. W., Fisher, J. B., Nassar, R., O'Dell, C., Wunch, D., Wennberg, P. O., Kort, E. A., Wofsy, S. C., Blumenstock, T., Deutscher, N. M., Griffith, D. W. T., Hase, F., Heikkinen, P., Sherlock, V., Strong, K., Sussmann, R., and Warneke, T.: Inferring regional sources and sinks of atmospheric CO2 from GOSAT XCO2 data, Atmos. Chem. Phys., 14, 3703-3727, doi:10.5194/acp-14-3703-2014, 2014.
8 Deng, J., Liu, Y., Yang, D., and Cai, Z.: CH4 retrieval from hyperspectral satellite measurements in short-wave infrared: sensitivity study and preliminary test with GOSAT data, Chinese Sci. Bull., 59, 1499-1507, doi:10.1007/s11434-014-0245-2, 2014.
9 Dils, B., Buchwitz, M., Reuter, M., Schneising, O., Boesch, H., Parker, R., Guerlet, S., Aben, I., Blumenstock, T., Burrows, J. P., Butz, A., Deutscher, N. M., Frankenberg, C., Hase, F., Hasekamp, O. P., Heymann, J., De Mazière, M., Notholt, J., Sussmann, R., Warneke, T., Griffith, D., Sherlock, V., and Wunch, D.: The Greenhouse Gas Climate Change Initiative (GHG-CCI): comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO2 and CH4 retrieval algorithm products with measurements from the TCCON, Atmos. Meas. Tech., 7, 1723-1744, doi:10.5194/amt-7-1723-2014, 2014.
10 Frankenberg, C., O'Dell, C., Berry, J., Guanter, L., Joiner, J., Kohler, P., Pollock, R., and E. Taylor, T.: Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2, Remote Sens. Environ., 147, 1-12, doi:10.1016/j.rse.2014.02.007, 2014.
11 Fraser, A., Palmer, P. I., Feng, L., Bösch, H., Parker, R., Dlugokencky, E. J., Krummel, P. B., and Langenfelds, R. L.: Estimating regional fluxes of CO2 and CH4 using space-borne observations of XCH4: XCO2, Atmos. Chem. Phys., 14, 12883-12895, doi:10.5194/acp-14-12883-2014, 2014.
12 Galli, A., Guerlet, S., Butz, A., Aben, I., Suto, H., Kuze, A., Deutscher, N. M., Notholt, J., Wunch, D., Wennberg, P. O., Griffith, D. W. T., Hasekamp, O., and Landgraf, J.: The impact of spectral resolution on satellite retrieval accuracy of CO2 and CH4, Atmos. Meas. Tech., 7, 1105-1119, doi:10.5194/amt-7-1105-2014, 2014.
13 Gavrilov, N. M., Makarova, M. V., Timofeyev, Y. M., and Poberovskii, A. V.: Comparisons of satellite (GOSAT) and ground-based spectroscopic measurements of CH4 content near Saint Petersburg: influence of data collocation, Int. J. Remote Sens., 35, 5628-5636, doi:10.1080/01431161.2014.945006, 2014.
14 Gavrilov, N. M., Makarova, M. V., Timofeev, Y. M., and Poberovsky, A. V.: Comparisons of CH4 ground-based FTIR measurements near Saint Petersburg with GOSAT observations, Atmos. Meas. Tech., 7, 1003-1010, doi:10.5194/amt-7-1003-2014, 2014.
15 Gavrilov, N. M., and Timofeev, Yu. M.: Comparisons of satellite (GOSAT) and ground-based spectroscopic measurements of CO2 content near St. Petersburg, Izv. Atmos. Ocean. Phy+., 50, 910-915, doi:10.1134/S0001433814090084, 2014.
16 Gryazin, V., Risi, C., Jouzel, J., Kurita, N., Worden, J., Frankenberg, C., Bastrikov, V., Gribanov, K., and Stukova, O.: To what extent could water isotopic measurements help us understand model biases in the water cycle over Western Siberia, Atmos. Chem. Phys., 14, 9807-9830, doi:10.5194/acp-14-9807-2014, 2014.
17 Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J. A., Frankenberg, C., Huete, A. R., Zarco-Tejada, P., Lee, J.-E., Moran, M. S., Ponce-Campos, G., Beer, C., Camps-Valls, G., Buchmann, N., Gianelle, D., Klumpp, K., Cescatti, A., Baker, J. M., and Griffis, T. J.: Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence, P. Natl. Acad. Sci. USA., 111, E1327-E1333, doi:10.1073/pnas.1320008111, 2014.
18 Houweling, S., Krol, M., Bergamaschi, P., Frankenberg, C., Dlugokencky, E. J., Morino, I., Notholt, J., Sherlock, V., Wunch, D., Beck, V., Gerbig, C., Chen, H., Kort, E. A., Röckmann, T., and Aben, I.: A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements, Atmos. Chem. Phys., 14, 3991-4012, doi:10.5194/acp-14-3991-2014, 2014.
19 Inoue, M., Morino, I., Uchino, O., Miyamoto, Y., Saeki, T., Yoshida, Y., Yokota, T., Sweeney, C., Tans, P. P., Biraud, S. C., Machida, T., Pittman, J. V., Kort, E. A., Tanaka, T., Kawakami, S., Sawa, Y., Tsuboi, K., and Matsueda, H.: Validation of XCH4 derived from SWIR spectra of GOSAT TANSO-FTS with aircraft measurement data, Atmos. Meas. Tech., 7, 2987-3005, doi:10.5194/amt-7-2987-2014, 2014.
20 Jing, Y., Shi, J., Wang, T., and Sussmann, R.: Mapping Global Atmospheric CO2 Concentration at High Spatiotemporal Resolution, Atmosphere, 5, 870-888, doi:10.3390/atmos5040870, 2014.
21 Kataoka, F., Knuteson, R., Kuze, A., Suto, H., Shiomi, K., Harada, M., Garms, E., Roman, J., Tobin, D., Taylor, J., Revercomb, H., Sekio, N., Higuchi, R., and Mitomi, Y.: TIR Spectral Radiance Calibration of the GOSAT Satellite Borne TANSO-FTS with the Aircraft-Based S-HIS and the Ground-Based S-AERI at the Railroad Valley Desert Playa, IEEE T. Geosci. Remote, 52, 89-105, doi:10.1109/TGRS.2012.2236561, 2014.
22 Kuze, A., Taylor, T., Kataoka, F., Bruegge, C., Crisp, D., Harada, M., Helmlinger, M., Inoue, M., Kawakami, S., Kikuchi, N., Mitomi, Y., Murooka, J., Naitoh, M., O'Brien, D., O'Dell, C., Ohyama, H., Pollock, H., Schwandner, F., Shiomi, K., Suto, H., Takeda, T., Tanaka, T., Urabe, T., Yokota, T., and Yoshida, Y.: Long-Term Vicarious Calibration of GOSAT Short-Wave Sensors: Techniques for Error Reduction and New Estimates of Radiometric Degradation Factors, IEEE T. Geosci. Remote, 52, 3991-4004, doi:10.1109/TGRS.2013.2278696, 2014.
23 Laurenza, L., Del Bianco, S., Gai, M., Barbara, F., Schiavon, G., and Cortesi, U.: Comparison of Column-Averaged Volume Mixing Ratios of Carbon Dioxide Retrieved From IASI/METOP-A Using KLIMA Algorithm and TANSO-FTS/GOSAT Level 2 Products, IEEE J. Sel. Top. Appl., 7, 389-398, doi:10.1109/JSTARS.2013.2276125, 2014.
24 Lei, L., Guan, X., Zeng, Z., Zhang, B., Ru, F., and Bu, R.: A comparison of atmospheric CO2 concentration GOSAT-based observations and model simulations, Sci. China Ser. D, 57, 1393-1402, doi:10.1007/s11430-013-4807-y, 2014.
25 Liu, J., Bowman, K., Lee, M., Henze, D., Bousserez, N., Brix, H., Collatz, G. J., Menemenlis, D., Ott, L., Pawson, S., Jones, D., and Nassar, R.: Carbon monitoring system flux estimation and attribution: impact of ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric sources and sinks, Tellus B, 66, doi:10.3402/tellusb.v66.22486, 2014.
26 Makarova, M. V., Gavrilov, N. M., Timofeev, Yu. M., and Poberovskii, A. V.: Comparisons of satellite (GOSAT) and ground-based Fourier spectroscopic measurements of methane content near St. Petersburg, Izv. Atmos. Ocean. Phy+., 50, 904-909, doi:10.1134/S0001433814090138, 2014.
27 Massart, S., Agusti-Panareda, A., Aben, I., Butz, A., Chevallier, F., Crevoisier, C., Engelen, R., Frankenberg, C., and Hasekamp, O.: Assimilation of atmospheric methane products into the MACC-II system: from SCIAMACHY to TANSO and IASI, Atmos. Chem. Phys., 14, 6139-6158, doi:10.5194/acp-14-6139-2014, 2014.
28 Nassar, R., Sioris, C. E., Jones, D. B. A., and McConnell, J. C.: Satellite observations of CO2 from a highly elliptical orbit for studies of the Arctic and boreal carbon cycle, J. Geophys. Res.-Atmos., 119, 2654-2673, doi:10.1002/2013JD020337, 2014.
29 Nguyen, H., Osterman, G., Wunch, D., O'Dell, C., Mandrake, L., Wennberg, P., Fisher, B., and Castano, R.: A method for colocating satellite XCO2 data to ground-based data and its application to ACOS-GOSAT and TCCON, Atmos. Meas. Tech., 7, 2631-2644, doi:10.5194/amt-7-2631-2014, 2014.
30 Nguyen, H., Katzfuss, M., Cressie, N., and Braverman, A.: Spatio-temporal data fusion for very large remote sensing datasets, Technometrics, 56, 174-185, doi:10.1080/00401706.2013.831774, 2014.
31 Parazoo, N. C., Bowman, K., Fisher, J. B., Frankenberg, C., Jones, D. B. A., Cescatti, A., Pérez-Priego, Ó., Wohlfahrt, G., and Montagnani, L.: Terrestrial gross primary production inferred from satellite fluorescence and vegetation models, Glob. Change Biol., 20, 3103-3121, doi:10.1111/gcb.12652, 2014.
32 Prasad, P., Rastogi, S., and Singh, R.P.: Study of satellite retrieved CO2 and CH4 concentration over India, Adv. Space Res., 54, 1933-1940, doi:10.1016/j.asr.2014.07.021, 2014.
33 Reuter, M., Buchwitz, M.,Hilker, M., Heymann, J., Schneising, O., Pillai, D., Bovensmann, H., Burrows, J. P., Bösch, H., Parker, R., Butz, A., Hasekamp, O., O'Dell, C. W., Yoshida, Y., Gerbig, C., Nehrkorn, T., Deutscher, N. M., Warneke, T., Notholt, J., Hase, F., Kivi, R., Sussmann, R., Machida, T., Matsueda, H., and Sawa, Y.: Satellite-inferred European carbon sink larger than expected, Atmos. Chem. Phys., 14, 13739-13753, doi:10.5194/acp-14-13739-2014, 2014.
34 Ricaud, P., Sič, B., El Amraoui, L., Attié, J.-L., Zbinden, R., Huszar, P., Szopa, S., Parmentier, J., Jaidan, N., Michou, M., Abida, R., Carminati, F., Hauglustaine, D., August, T., Warner, J., Imasu, R., Saitoh, N., and Peuch, V.-H.: Impact of the Asian monsoon anticyclone on the variability of mid-to-upper tropospheric methane above the Mediterranean Basin, Atmos. Chem. Phys., 14, 11427-11446, doi:10.5194/acp-14-11427-2014, 2014.
35 Tadic, J. M., Loewenstein, M., Frankenberg, C., Butz, A., Roby, M., Iraci, L. T., Yates, E. L., Gore, W., and Kuze, A.: A Comparison of In Situ Aircraft Measurements of Carbon Dioxide and Methane to GOSAT Data Measured Over Railroad Valley Playa, Nevada, USA, IEEE T. Geosci. Remote, 52, 7764-7774, doi:10.1109/TGRS.2014.2318201, 2014.
36 Takagi, H., Houweling, S., Andres, R. J., Belikov, D., Bril, A., Boesch, H., Butz, A., Guerlet, S., Hasekamp, O., Maksyutov, S., Morino, I., Oda, T., O'Dell, C. W., Oshchepkov, S., Parker, R., Saito, M., Uchino, O., Yokota, T., Yoshida, Y., and Valsala, V.: Influence of differences in current GOSAT XCO2 retrievals on surface flux estimation, Geophys. Res. Lett., 41, 2598-2605, doi:10.1002/2013GL059174, 2014.
37 Tian, X., Xie, Z., Liu, Y., Cai, Z., Fu, Y., Zhang, H., Feng, L.: A joint data assimilation system (Tan-Tracker) to simultaneously estimate surface CO2 fluxes and 3-D atmospheric CO2 concentrations from observations, Atmos. Chem. Phys., 14, 13281-13293, doi:10.5194/acp-14-13281-2014, 2014.
38 Uchino, O., Sakai, T., Nagai, T., Morino, I., Maki, T., Deushi, M., Shibata, K., Kajino, M., Kawasaki, T., Akaho, T., Takubo, S., Okumura, H., Arai, K., Nakazato, M., Matsunaga, T., Yokota, T., Kawakami, S., Kita, K., and Sasano, Y.: DIAL measurement of lower tropospheric ozone over Saga (33.24° N, 130.29° E), Japan, and comparison with a chemistry-climate model, Atmos. Meas. Tech., 7, 1385-1394, doi:10.5194/amt-7-1385-2014, 2014.
39 Wang, T., Shi, J., Jing, Y., Zhao, T., Ji, D., and Xiong, C.: Combining XCO2 measurements derived from SCIAMACHY and GOSAT for potentially generating global CO2 maps with high spatiotemporal resolution, PloS ONE, 9, e105050, doi:10.1371/journal.pone.0105050, 2014.
40 Wecht, K. J., Jacob, D. J., Sulprizio, M. P., Santoni, G. W., Wofsy, S. C., Parker, R., Bösch, H., and Worden, J.: Spatially resolving methane emissions in California: constraints from the CalNex aircraft campaign and from present (GOSAT, TES) and future (TROPOMI, geostationary) satellite observations, Atmos. Chem. Phys., 14, 8173-8184, doi:10.5194/acp-14-8173-2014, 2014.
41 Wei, J., Savtchenko, A., Vollmer, B., Hearty, T., Albayrak, A., Crisp, D., and Eldering, A.: Advances in CO2 Observations From AIRS and ACOS, IEEE Geosci. Remote Sens. Lett., 11, 891-895, doi:10.1109/LGRS.2013.2281147, 2014.
42 Zeng, Z., Lei, L., Hou, S., Ru, F., Guan, X., and Zhang, B.: A Regional Gap-Filling Method Based on Spatiotemporal Variogram Model of CO2 Columns, IEEE T. Geosci. Remote, 52, 3594-3603, doi:10.1109/TGRS.2013.2273807, 2014.
43 Zhang, L., Xiao, J., Li, L., Lei, L., and Li, J.: China's sizeable and uncertain carbon sink: a perspective from GOSAT, Chinese Sci. Bull., 59, 1547-1555, doi:10.1007/s11434-014-0260-3, 2014.

2013年発表

(2015年2月24日更新)
1 Basu, S., Guerlet, S., Butz, A., Houweling, S., Hasekamp, O., Aben, I., Krummel, P., Steele, P., Langenfelds, R., Torn, M., Biraud, S., Stephens, B., Andrews, A., and Worthy, D.: Global CO2 fluxes estimated from GOSAT retrievals of total column CO2, Atmos. Chem. Phys., 13, 8695-8717, doi:10.5194/acp-13-8695-2013, 2013.
2 Boesch, H., Deutscher, N. M., Warneke, T., Byckling, K., Cogan, A. J., Griffith, D. W. T., Notholt, J., Parker, R. J., and Wang, Z.: HDO/H2O ratio retrievals from GOSAT, Atmos. Meas. Tech., 6, 599-612, doi:10.5194/amt-6-599-2013, 2013.
3 Buchwitz, M., Reuter, M., Bovensmann, H., Pillai, D., Heymann, J., Schneising, O., Rozanov, V., Krings, T., Burrows, J. P., Boesch, H., Gerbig, C., Meijer, Y., and Löscher, A.: Carbon Monitoring Satellite (CarbonSat): assessment of atmospheric CO2 and CH4 retrieval errors by error parameterization, Atmos. Meas. Tech., 6, 3477-3500, doi:10.5194/amt-6-3477-2013, 2013.
4 Butz, A., Guerlet, S., Hasekamp, O. P., Kuze, A., and Suto, H.: Using ocean-glint scattered sunlight as a diagnostic tool for satellite remote sensing of greenhouse gases, Atmos. Meas. Tech., 6, 2509-2520, doi:10.5194/amt-6-2509-2013, 2013.
5 Campargue, A., Leshchishina, O., Mondelain, D., Kassi, S., and Coustenis, A.: An improved empirical line list for methane in the region of the 2ν3 band at 1.66 μm, J. Quant. Spectrosc. Ra., 118, 49-59, doi:10.1016/j.jqsrt.2012.12.004, 2013.
6 Chatterjee, A., Engelen, R. J., Kawa, S. R., Sweeney, C., and Michalak, A. M.: Background error covariance estimation for atmospheric CO2 data assimilation, J. Geophys. Res.-Atmos., 118, 10,140-10,154, doi:10.1002/jgrd.50654, 2013.
7 Chevallier, F. and O'Dell, C. W.: Error statistics of Bayesian CO2 flux inversion schemes as seen from GOSAT, Geophys. Res. Lett., 40, 1252-1256, doi:10.1002/grl.50228, 2013.
8 Choi, J. H., and Um, J. S.: Analysis of CO2 Distribution Properties Using GOSAT: a Case Study of North-East Asia, Journal of Korean Society for Geospatial Information System, 21, 85-92, doi:10.7319/kogsis.2013.21.2.085, 2013.
9 Frankenberg, C., Wunch, D., Toon, G., Risi, C., Scheepmaker, R., Lee, J.-E., Wennberg, P., and Worden, J.: Water vapor isotopologue retrievals from high-resolution GOSAT shortwave infrared spectra, Atmos. Meas. Tech., 6, 263-274, doi:10.5194/amt-6-263-2013, 2013.
10 Fraser, A., Palmer, P. I., Feng, L., Boesch, H., Cogan, A., Parker, R., Dlugokencky, E. J., Fraser, P. J., Krummel, P. B., Langenfelds, R. L., O'Doherty, S., Prinn, R. G., Steele, L. P., van der Schoot, M., and Weiss, R. F.: Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements, Atmos. Chem. Phys., 13, 5697-5713, doi:10.5194/acp-13-5697-2013, 2013.
11 Fukuda, S., Nakajima, T., Takenaka, H., Higurashi, A., Kikuchi, N., Nakajima, T. Y., and Ishida, H.: New approaches to removing cloud shadows and evaluating the 380 nm surface reflectance for improved aerosol optical thickness retrievals from the GOSAT/TANSO-Cloud and Aerosol Imager, J. Geophys. Res.-Atmos., 118, 13,520-13,531, doi:10.1002/2013JD020090, 2013.
12 Guanter, L., Rossini, M., Colombo, R., Meroni, M., Frankenberg, C., Lee, J.-E., and Joiner, J.: Using field spectroscopy to assess the potential of statistical approaches for the retrieval of sun-induced chlorophyll fluorescence from ground and space, Remote Sens. Environ., 133, 52-61, doi:10.1016/j.rse.2013.01.017, 2013.
13 Guerlet, S., Basu, S., Butz, A., Krol, M., Hahne, P., Houweling, S., Hasekamp, O. P., and Aben, I.: Reduced carbon uptake during the 2010 Northern Hemisphere summer from GOSAT, Geophys. Res. Lett., 40, 2378-2383, doi:10.1002/grl.50402, 2013a.
14 Guerlet, S., Butz, A., Schepers, D., Basu, S., Hasekamp, O. P., Kuze, A., Yokota, T., Blavier, J.-F., Deutscher, N. M., Griffith, D. W. T., Hase, F., Kyro, E., Morino, I., Sherlock, V., Sussmann, R., Galli, A., and Aben, I.: Impact of aerosol and thin cirrus on retrieving and validating XCO2 from GOSAT shortwave infrared measurements, J. Geophys. Res., 118, 4887-4905, doi:10.1002/jgrd.50332, 2013.
15 Guo, M., Wang, X., Li, J., Wang, H., and Tani, H.: Examining the relationships between land cover and greenhouse gas concentrations using remote-sensing data in East Asia, Int. J. Remote Sens., 34, 4281-4303, doi:10.1080/01431161.2013.775535, 2013.
16 Guo, M., Wang, X.-F., Li, J., Yi, K.-P., Zhong, G.-S., Wang, H.-M., and Tani, H.: Spatial distribution of greenhouse gas concentrations in arid and semi-arid regions: A case study in East Asia, J. Arid Environ., 91, 119-128, doi:10.1016/j.jaridenv.2013.01.001, 2013.
17 Herbin, H., Labonnote, L. C., and Dubuisson, P.: Multispectral information from TANSO-FTS instrument - Part 1: Application to greenhouse gases (CO2 and CH4) in clear sky conditions, Atmos. Meas. Tech., 6, 3301-3311, doi:10.5194/amt-6-3301-2013, 2013.
18 Herbin, H., Labonnote, L. C., and Dubuisson, P.: Multispectral information from TANSO-FTS instrument - Part 2: Application to aerosol effect on greenhouse gas retrievals, Atmos. Meas. Tech., 6, 3313-3323, doi:10.5194/amt-6-3313-2013, 2013.
19 Hong, H., Lee, H., Jung, Y., Kim, W., and Kim, J.: Comparison of carbon dioxide volume mixing ratios measured by GOSAT TANSO-FTS and TCCON over two sites in East Asia, Korean Journal of Remote Sensing, 29, 657-662, doi:10.7780/kjrs.2013.29.6.8, 2013.
20 Huo, J., Zhang, W., Zeng, X., Lü, D., and Liu, Y.: Examination of the quality of GOSAT/CAI cloud flag data over Beijing using ground-based cloud data, Advances in Atmospheric Sciences, 30, 1526-1534, doi:10.1007/s00376-013-2267-0, 2013.
21 Inoue, M., Morino, I., Uchino, O., Miyamoto, Y., Yoshida, Y., Yokota, T., Machida, T., Sawa, Y., Matsueda, H., Sweeney, C., Tans, P. P., Andrews, A. E., Biraud, S. C., Tanaka, T., Kawakami, S., and Patra, P. K.: Validation of XCO2 derived from SWIR spectra of GOSAT TANSO-FTS with aircraft measurement data, Atmos. Chem. Phys., 13, 9771-9788, doi:10.5194/acp-13-9771-2013, 2013.
22 Joiner, J., Guanter, L., Lindstrot, R., Voigt, M., Vasilkov, A. P., Middleton, E. M., Huemmrich, K. F., Yoshida, Y., and Frankenberg, C.: Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2, Atmos. Meas. Tech., 6, 2803-2823, doi:10.5194/amt-6-2803-2013, 2013.
23 Keppel-Aleks, G., Wennberg, P. O., O'Dell, C. W., and Wunch, D.: Towards constraints on fossil fuel emissions from total column carbon dioxide, Atmos. Chem. Phys., 13, 4349-4357, doi:10.5194/acp-13-4349-2013, 2013.
24 Lee, J.-E., Frankenberg, C., van der Tol, C., Berry, J. A., Guanter, L., Boyce, C. K., Fisher, J. B., Morrow, E., Worden, J. R., Asefi, S., Badgley, G., and Saatchi, S.: Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence, P. Roy. Soc. B-Biol. Sci., 280, doi:10.1098/rspb.2013.0171, 2013.
25 Leifer, I., Culling, D., Schneising, O., Farrell, P., Buchwitz, M., and Burrows, J. P.: Transcontinental methane measurements: Part 2. Mobile surface investigation of fossil fuel industrial fugitive emissions, Atmos. Environ., 74, 432-441, doi:10.1016/j.atmosenv.2013.03.018, 2013.
26 Liu, Y., Yang, D., and Cai, Z.: A retrieval algorithm for TanSat XCO2 observation: Retrieval experiments using GOSAT data, Chinese Sci. Bull., 58, 1520-1523, doi:10.1007/s11434-013-5680-y, 2013.
27 Maksyutov, S., Takagi, H., Valsala, V. K., Saito, M., Oda, T., Saeki, T., Belikov, D. A., Saito, R., Ito, A., Yoshida, Y., Morino, I., Uchino, O., Andres, R. J., and Yokota, T.: Regional CO2 flux estimates for 2009-2010 based on GOSAT and ground-based CO2 observations, Atmos. Chem. Phys., 13, 9351-9373, doi:10.5194/acp-13-9351-2013, 2013.
28 Mandrake, L., Frankenberg, C., O'Dell, C. W., Osterman, G., Wennberg, P., and Wunch, D.: Semi-autonomous sounding selection for OCO-2, Atmos. Meas. Tech., 6, 2851-2864, doi:10.5194/amt-6-2851-2013, 2013.
29 McGarragh, G. and Gabriel, P.: A new vector radiative transfer solution using Padé approximants, J. Quant. Spectrosc. Ra., 119, 12-22, doi:10.1016/j.jqsrt.2013.01.012, 2013.
30 Miao, R., Lu, N., Yao, L., Zhu, Y., Wang, J., and Sun, J.: Multi-year comparison of carbon dioxide from satellite data with ground-based FTS measurements (2003-2011), Remote Sens., 5, 3431-3456, doi:10.3390/rs5073431, 2013.
31 Miyamoto, Y., Inoue, M., Morino, I., Uchino, O., Yokota, T., Machida, T., Sawa, Y., Matsueda, H., Sweeney, C., Tans, P. P., Andrews, A. E., and Patra, P. K.: Atmospheric column-averaged mole fractions of carbon dioxide at 53 aircraft measurement sites, Atmos. Chem. Phys., 13, 5265-5275, doi:10.5194/acp-13-5265-2013, 2013.
32 Monteil, G., Houweling, S., Butz, A., Guerlet, S., Schepers, D., Hasekamp, O., Frankenberg, C., Scheepmaker, R., Aben, I., and Rockmann, T.: Comparison of CH4 inversions based on 15 months of GOSAT and SCIAMACHY observations, J. Geophys. Res.-Atmos., 118, 11,807-11,823, doi:10.1002/2013JD019760, 2013.
33 O'Brien, D., Polonsky, I., O'Dell, C., Kuze, A., Kikuchi, N., Yoshida, Y., and Natraj, V.: Testing the Polarization Model for TANSO-FTS on GOSAT Against Clear-Sky Observations of Sun Glint Over the Ocean, IEEE T. Geosci. Remote, 51, 5199-5209, doi:10.1109/TGRS.2012.2232673, 2013.
34 Ohyama, H., Kawakami, S., Shiomi, K., Morino, I., and Uchino, O.: Atmospheric Temperature and Water Vapor Retrievals from GOSAT Thermal Infrared Spectra and Initial Validation with Coincident Radiosonde Measurements, SOLA, 9, 143-147, doi:10.2151/sola.2013-032, 2013.
35 Oshchepkov, S., Bril, A., Yokota, T., Wennberg, P. O., Deutscher, N. M., Wunch, D., Toon, G. C., Yoshida, Y., O'Dell, C. W., Crisp, D., Miller, C. E., Frankenberg, C., Butz, A., Aben, I., Guerlet, S., Hasekamp, O., Boesch, H., Cogan, A., Parker, R., Griffith, D., Macatangay, R., Notholt, J., Sussmann, R., Rettinger, M., Sherlock, V., Robinson, J., Kyrö, E., Heikkinen, P., Feist, D. G., Morino, I., Kadygrov, N., Belikov, D., Maksyutov, S., Matsunaga, T., Uchino, O., and Watanabe, H.: Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space. Part 2: Algorithm intercomparison in the GOSAT data processing for CO2 retrievals over TCCON sites, J. Geophys. Res., 118, 1493-1512, doi:10.1002/jgrd.50146, 2013.
36 Oshchepkov, S., Bril, A., Yokota, T., Yoshida, Y., Blumenstock, T., Deutscher, N. M., Dohe, S., Macatangay, R., Morino, I., Notholt, J., Rettinger, M., Petri, C., Schneider, M., Sussman, R., Uchino, O., Velazco, V., Wunch, D., and Belikov, D.: Simultaneous retrieval of atmospheric CO2 and light path modification from space-based spectroscopic observations of greenhouse gases: methodology and application to GOSAT measurements over TCCON sites, Appl. Optics, 52, 1339-1350, doi:10.1364/AO.52.001339, 2013.
37 Parazoo, N. C., Bowman, K., Frankenberg, C., Lee, J.-E., Fisher, J. B., Worden, J., Jones, D. B. A., Berry, J., Collatz, G. J., Baker, I. T., Jung, M., Liu, J., Osterman, G., O'Dell, C., Sparks, A., Butz, A., Guerlet, S., Yoshida, Y., Chen, H., and Gerbig, C.: Interpreting seasonal changes in the carbon balance of southern Amazonia using measurements of XCO2 and chlorophyll fluorescence from GOSAT, Geophys. Res. Lett., 40, 2829-2833, doi:10.1002/grl.50452, 2013.
38 Qu, Y., Zhang, C., Wang, D., Tian, P., Bai, W., Zhang, X., Zhang, P., Dai, H., and Wu, Q.: Comparison of atmospheric CO2 observed by GOSAT and two ground stations in China, Int. J. Remote Sens., 34, 3938-3946, doi:10.1080/01431161.2013.768362, 2013.
39 Reuter, M., Bösch, H., Bovensmann, H., Bril, A., Buchwitz, M., Butz, A., Burrows, J. P., O'Dell, C. W., Guerlet, S., Hasekamp, O., Heymann, J., Kikuchi, N., Oshchepkov, S., Parker, R., Pfeifer, S., Schneising, O., Yokota, T., and Yoshida, Y.: A joint effort to deliver satellite retrieved atmospheric CO2 concentrations for surface flux inversions: the ensemble median algorithm EMMA, Atmos. Chem. Phys., 13, 1771-1780, doi:10.5194/acp-13-1771-2013, 2013.
40 Risi, C., Noone, D., Frankenberg, C., and Worden, J.: Role of continental recycling in intraseasonal variations of continental moisture as deduced from model simulations and water vapor isotopic measurements, Water Resour. Res., 49, 4136-4156, doi:10.1002/wrcr.20312, 2013.
41 Ross, A. N., Wooster, M. J., Boesch, H., and Parker, R.: First satellite measurements of carbon dioxide and methane emission ratios in wildfire plumes, Geophys. Res. Lett., 40, 4098-4102, doi:10.1002/grl.50733, 2013.
42 Saeki, T., Maksyutov, S., Saito, M., Valsala, V., Oda, T., Andres, R. J., Belikov, D., Tans, P., Dlugokencky, E., Yoshida, Y., Morino, I., Uchino, O., and Yokota, T.: Inverse Modeling of CO2 Fluxes Using GOSAT Data and Multi-Year Ground-Based Observations, SOLA, 9, 45-50, doi:10.2151/sola.2013-011, 2013.
43 Saeki, T., Saito, R., Belikov, D., and Maksyutov, S.: Global high-resolution simulations of CO2 and CH4 using a NIES transport model to produce a priori concentrations for use in satellite data retrievals, Geosci. Model Dev., 6, 81-100, doi:10.5194/gmd-6-81-2013, 2013.
44 Shim, C., Lee, J., and Wang, Y.: Effect of continental sources and sinks on the seasonal and latitudinal gradient of atmospheric carbon dioxide over East Asia, Atmos. Environ., 79, 853-860, doi:10.1016/j.atmosenv.2013.07.055, 2013.
45 Si-Yang, C., Liang, X., Min-Guang, G., Ling, J., Sheng, L., Shu-Xiang, F., Jian-Guo, L., and Wen-Qing, L.: Study on remote sensing of carbon dioxide column concentration in the atmosphere by direct-sun infrared absorption spectroscopy, Acta Phys. Sin.-Ch. Ed., 62, 124206, doi:10.7498/aps.62.124206, 2013.
46 Si-Yang, C., Liang, X., Min-Guang, G., Sheng, L., Ling, J., Jing-Jing, T., Xiu-Li, W., Jian-Guo, L., and Wen-Qing, L.: Ground-based remote sensing of atmospheric total column CO2 and CH4 by direct sunlight in Hefei, Chinese Phys. B, 22, 129201, 2013.
47 Silva, S. J., Arellano, A. F., and Worden, H. M.: Toward anthropogenic combustion emission constraints from space-based analysis of urban CO2/CO sensitivity, Geophys. Res. Lett., 40, 4971-4976, doi:10.1002/grl.50954, 2013.
48 Suto, H., Yoshida, J., Desbiens, R., Kawashima, T., and Kuze, A.: Characterization and correction of spectral distortions induced by microvibrations onboard the GOSAT Fourier transform spectrometer, Appl. Optics, 52, 4969-4980, doi:10.1364/AO.52.004969, 2013.
49 Vasilkov, A., Joiner, J., and Spurr, R.: Note on rotational-Raman scattering in the O2 A- and B-bands, Atmos. Meas. Tech., 6, 981-990, doi:10.5194/amt-6-981-2013, 2013.
50 Wang, T., Shi, J., Jing, Y., and Xie, Y.: Investigation of the consistency of atmospheric CO2 retrievals from different space-based sensors: Intercomparison and spatiotemporal analysis, Chinese Sci. Bull., 58, 4161-4170, doi:10.1007/s11434-013-5996-7, 2013.
51 Wunch, D., Wennberg, P. O., Messerschmidt, J., Parazoo, N. C., Toon, G. C., Deutscher, N. M., Keppel-Aleks, G., Roehl, C. M., Randerson, J. T., Warneke, T., and Notholt, J.: The covariation of Northern Hemisphere summertime CO2 with surface temperature in boreal regions, Atmos. Chem. Phys., 13, 9447-9459, doi:10.5194/acp-13-9447-2013, 2013.
52 Xu, Y., Ke, C., Wang, J., Sun, J., Liu, Y., Harris, W., and Kou, C.: Satellite-derived estimations of spatial and seasonal variation in tropospheric carbon dioxide mass over China, Ecol. Evol., 3, 4310-4325, doi:10.1002/ece3.823, 2013.
53 Yoshida, Y., Kikuchi, N., Morino, I., Uchino, O., Oshchepkov, S., Bril, A., Saeki, T., Schutgens, N., Toon, G. C., Wunch, D., Roehl, C. M., Wennberg, P. O., Griffith, D. W. T., Deutscher, N. M., Warneke, T., Notholt, J., Robinson, J., Sherlock, V., Connor, B., Rettinger, M., Sussmann, R., Ahonen, P., Heikkinen, P., Kyrö, E., Mendonca, J., Strong, K., Hase, F., Dohe, S., and Yokota, T.: Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data, Atmos. Meas. Tech., 6, 1533-1547, doi:10.5194/amt-6-1533-2013, 2013.
54 Zeng, Z., Lei, L., Guo, L., Zhang, L., and Zhang, B.: Incorporating temporal variability to improve geostatistical analysis of satellite-observed CO2 in China, Chinese Sci. Bull., 58, 1948-1954, doi:10.1007/s11434-012-5652-7, 2013.

2012年発表

(2014年9月29日更新)
1 Bril, A., Oshchepkov, S., and Yokota, T.: Application of a probability density function-based atmospheric light-scattering correction to carbon dioxide retrievals from GOSAT over-sea observations, Remote Sens. Environ., 117, 301-306, doi:10.1016/j.rse.2011.10.005, 2012.
2 Cogan, A. J., Boesch, H., Parker, R. J., Feng, L., Palmer, P. I., Blavier, J.-F. L., Deutscher, N. M., Macatangay, R., Notholt, J., Roehl, C., Warneke, T., and Wunch, D.: Atmospheric carbon dioxide retrieved from the Greenhouse gases Observing SATellite (GOSAT): Comparison with ground-based TCCON observations and GEOS-Chem model calculations, J. Geophys. Res., 117, D21301, doi:10.1029/2012JD018087, 2012.
3 Crisp, D., Fisher, B. M., O'Dell, C., Frankenberg, C., Basilio, R., Bösch, H., Brown, L. R., Castano, R., Connor, B., Deutscher, N. M., Eldering, A., Griffith, D., Gunson, M., Kuze, A., Mandrake, L., McDuffie, J., Messerschmidt, J., Miller, C. E., Morino, I., Natraj, V., Notholt, J., O'Brien, D. M., Oyafuso, F., Polonsky, I., Robinson, J., Salawitch, R., Sherlock, V., Smyth, M., Suto, H., Taylor, T. E., Thompson, D. R., Wennberg, P. O., Wunch, D., and Yung, Y. L.: The ACOS CO2 retrieval algorithm - Part II: Global XCO2 data characterization, Atmos. Meas. Tech., 5, 687-707, doi:10.5194/amt-5-687-2012, 2012.
4 Dai, T., Shi, G., Zhang, X., and Xu, N.: Influence of HITRAN database updates on retrievals of atmospheric CO2 from near-infrared spectra, Acta Meteorol. Sin., 26, 629-641, doi:10.1007/s13351-012-0507-3, 2012.
5 Frankenberg, C., Hasekamp, O., O'Dell, C., Sanghavi, S., Butz, A., and Worden, J.: Aerosol information content analysis of multi-angle high spectral resolution measurements and its benefit for high accuracy greenhouse gas retrievals, Atmos. Meas. Tech., 5, 1809-1821, doi:10.5194/amt-5-1809-2012, 2012.
6 Frankenberg, C., O'Dell, C., Guanter, L., and McDuffie, J.: Remote sensing of near-infrared chlorophyll fluorescence from space in scattering atmospheres: implications for its retrieval and interferences with atmospheric CO2 retrievals, Atmos. Meas. Tech., 5, 2081-2094, doi:10.5194/amt-5-2081-2012, 2012.
7 Guanter, L., Frankenberg, C., Dudhia, A., Lewis, P. E., Gómez-Dans, J., Kuze, A., Suto, H., and Grainger, R. G.: Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements, Remote Sens. Environ., 121, 236-251, doi:10.1016/j.rse.2012.02.006, 2012.
8 Guo, M., Wang, X., Li, J., Yi, K., Zhong, G., and Tani, H.: Assessment of Global Carbon Dioxide Concentration Using MODIS and GOSAT Data, Sensors, 12, 16368-16389, doi:10.3390/s121216368, 2012.
9 Guo, M., Wang, X., Liu, Y., Li, J., Wang, H., Matsuoka, N., and Tani, H.: The effects of sand dust storms on greenhouse gases, Int. J. Remote Sens., 33, 6838-6853, doi:10.1080/01431161.2012.695094, 2012.
10 Hammerling, D. M., Michalak, A. M., O'Dell, C., and Kawa, S. R.: Global CO2 distributions over land from the Greenhouse Gases Observing Satellite (GOSAT), Geophys. Res. Lett., 39, L08804, doi:10.1029/2012GL051203, 2012.
11 Ishii, S., Mizutani, K., Baron, P., Iwai, H., Oda, R., Itabe, T., Fukuoka, H., Ishikawa, T., Koyama, M., Tanaka, T., Morino, I., Uchino, O., Sato, A., and Asai, K.: Partial CO2 Column-Averaged Dry-Air Mixing Ratio from Measurements by Coherent 2-μm Differential Absorption and Wind Lidar with Laser Frequency Offset Locking, J. Atmos. Ocean. Tech., 29, 1169-1181, doi:10.1175/JTECH-D-11-00180.1, 2012.
12 Joiner, J., Yoshida, Y., Vasilkov, A. P., Middleton, E. M., Campbell, P. K. E., Yoshida, Y., Kuze, A., and Corp, L. A.: Filling-in of near-infrared solar lines by terrestrial fluorescence and other geophysical effects: simulations and space-based observations from SCIAMACHY and GOSAT, Atmos. Meas. Tech., 5, 809-829, doi:10.5194/amt-5-809-2012, 2012.
13 Kang, J.-S., Kalnay, E., Miyoshi, T., Liu, J., and Fung, I.: Estimation of surface carbon fluxes with an advanced data assimilation methodology, J. Geophys. Res., 117, D24101, doi:10.1029/2012JD018259, 2012.
14 Kataev, M. Y., Kataev, S. G., Maksyutov, S., Andreev, A. G., Bazelyuk, S. A., and Lukianov, A. K.: Mathematical algorithms for processing and analysis of near-infrared data from a satellite-borne Fourier transform spectrometer, Russ. Phys. J., 55, 330-335, doi:10.1007/s11182-012-9816-3, 2012.
15 Kawasaki, M., Yoshioka, H., Jones, N. B., Macatangay, R., Griffith, D. W. T., Kawakami, S., Ohyama, H., Tanaka, T., Morino, I., Uchino, O., and Ibuki, T.: Usability of optical spectrum analyzer in measuring atmospheric CO2 and CH4 column densities: inspection with FTS and aircraft profiles in situ, Atmos. Meas. Tech., 5, 2593-2600, doi:10.5194/amt-5-2593-2012, 2012.
16 Kort, E. A., Frankenberg, C., Miller, C. E., and Oda, T.: Space-based observations of megacity carbon dioxide, Geophys. Res. Lett., 39, L17806, doi:10.1029/2012GL052738, 2012.
17 Kuze, A., Suto, H., Shiomi, K., Urabe, T., Nakajima, M., Yoshida, J., Kawashima, T., Yamamoto, Y., Kataoka, F., and Buijs, H.: Level 1 algorithms for TANSO on GOSAT: processing and on-orbit calibrations, Atmos. Meas. Tech., 5, 2447-2467, doi:10.5194/amt-5-2447-2012, 2012.
18 Liu, Y., Wang, X., Guo, M., and Tani, H.: Mapping the FTS SWIR L2 product of XCO2 and XCH4 data from the GOSAT by the Kriging method - a case study in East Asia, Int. J. Remote Sens., 33, 3004-3025, doi:10.1080/01431161.2011.624132, 2012.
19 O'Dell, C. W., Connor, B., Bösch, H., O'Brien, D., Frankenberg, C., Castano, R., Christi, M., Eldering, D., Fisher, B., Gunson, M., McDuffie, J., Miller, C. E., Natraj, V., Oyafuso, F., Polonsky, I., Smyth, M., Taylor, T., Toon, G. C., Wennberg, P. O., and Wunch, D.: The ACOS CO2 retrieval algorithm - Part 1: Description and validation against synthetic observations, Atmos. Meas. Tech., 5, 99-121, doi:10.5194/amt-5-99-2012, 2012.
20 Ohyama, H., Kawakami, S., Shiomi, K., and Miyagawa, K.: Retrievals of Total and Tropospheric Ozone From GOSAT Thermal Infrared Spectral Radiances, IEEE T. Geosci. Remote, 50, 1770-1784, doi:10.1109/TGRS.2011.2170178, 2012.
21 Oshchepkov, S., Bril, A., Yokota, T., Morino, I., Yoshida, Y., Matsunaga, T., Belikov, D., Wunch, D., Wennberg, P., Toon, G., O'Dell, C., Butz, A., Guerlet, S., Cogan, A., Boesch, H., Eguchi, N., Deutscher, N., Griffith, D., Macatangay, R., Notholt, J., Sussmann, R., Rettinger, M., Sherlock, V., Robinson, J., Kyrö, E., Heikkinen, P., Feist, D. G., Nagahama, T., Kadygrov, N., Maksyutov, S., Uchino, O., and Watanabe, H.: Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space: Validation of PPDF-based CO2 retrievals from GOSAT, J. Geophys. Res., 117, D12305, doi:10.1029/2012JD017505, 2012.
22 Reuter, M., Buchwitz, M., Schneising, O., Hase, F., Heymann, J., Guerlet, S., Cogan, A. J., Bovensmann, H., and Burrows, J. P.: A simple empirical model estimating atmospheric CO2 background concentrations, Atmos. Meas. Tech., 5, 1349-1357, doi:10.5194/amt-5-1349-2012, 2012.
23 Riris, H., Numata, K., Li, S., Wu, S., Ramanathan, A., Dawsey, M., Mao, J., Kawa, R., and Abshire, J. B.: Airborne measurements of atmospheric methane column abundance using a pulsed integrated-path differential absorption lidar, Appl. Optics, 51, 8296-8305, doi:10.1364/AO.51.008296, 2012.
24 Saitoh, N., Touno, M., Hayashida, S., Imasu, R., Shiomi, K., Yokota, T., Yoshida, Y., Machida, T., Matsueda, H., and Sawa, Y.: Comparisons between XCH4 from GOSAT Shortwave and Thermal Infrared Spectra and Aircraft CH4 Measurements over Guam, SOLA, 8, 145-149, doi:10.2151/sola.2012-036, 2012.
25 Schepers, D., Guerlet, S., Butz, A., Landgraf, J., Frankenberg, C., Hasekamp, O., Blavier, J.-F., Deutscher, N. M., Griffith, D. W. T., Hase, F., Kyro, E., Morino, I., Sherlock, V., Sussmann, R., and Aben, I.: Methane retrievals from Greenhouse Gases Observing Satellite (GOSAT) shortwave infrared measurements: Performance comparison of proxy and physics retrieval algorithms, J. Geophys. Res., 117, D10307, doi:10.1029/2012JD017549, 2012.
26 Tanaka, T., Miyamoto, Y., Morino, I., Machida, T., Nagahama, T., Sawa, Y., Matsueda, H., Wunch, D., Kawakami, S., and Uchino, O.: Aircraft measurements of carbon dioxide and methane for the calibration of ground-based high-resolution Fourier Transform Spectrometers and a comparison to GOSAT data measured over Tsukuba and Moshiri, Atmos. Meas. Tech., 5, 2003-2012, doi:10.5194/amt-5-2003-2012, 2012.
27 Taylor, T. E., O'Dell, C. W., O'Brien, D. M., Kikuchi, N., Yokota, T., Nakajima, T. Y., Ishida, H., Crisp, D., and Nakajima, T.: Comparison of Cloud-Screening Methods Applied to GOSAT Near-Infrared Spectra, IEEE T. Geosci. Remote, 50, 295-309, doi:10.1109/TGRS.2011.2160270, 2012.
28 Thompson, D. R., Benner, D. C., Brown, L. R., Crisp, D., Devi, V. M., Jiang, Y., Natraj, V., Oyafuso, F., Sung, K., Wunch, D., Castaño, R., and Miller, C. E.: Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission, J. Quant. Spectrosc. Ra., 113, 2265-2276, doi:10.1016/j.jqsrt.2012.05.021, 2012.
29 Uchino, O., Kikuchi, N., Sakai, T., Morino, I., Yoshida, Y., Nagai, T., Shimizu, A., Shibata, T., Yamazaki, A., Uchiyama, A., Kikuchi, N., Oshchepkov, S., Bril, A., and Yokota, T.: Influence of aerosols and thin cirrus clouds on the GOSAT-observed CO2: a case study over Tsukuba, Atmos. Chem. Phys., 12, 3393-3404, doi:10.5194/acp-12-3393-2012, 2012.
30 Uchino, O., Sakai, T., Nagai, T., Nakamae, K., Morino, I., Arai, K., Okumura, H., Takubo, S., Kawasaki, T., Mano, Y., Matsunaga, T., and Yokota, T.: On recent (2008 - 2012) stratospheric aerosols observed by lidar over Japan, Atmos. Chem. Phys., 12, 11975-11984, doi:10.5194/acp-12-11975-2012, 2012.
31 Wei, G., Wei-Dong, C., Wei-Jun, Z., Yi-Qian, Y., and Xiao-Ming, G.: Low temperature laser absorption spectra of methane in the near-infrared at 1.65 μm for lower state energy determination, Chinese Phys. B, 21, 014211, doi:10.1088/1674-1056/21/1/014211, 2012.
32 Yoshida, Y., Kikuchi, N., and Yokota, T.: On-orbit radiometric calibration of SWIR bands of TANSO-FTS onboard GOSAT, Atmos. Meas. Tech., 5, 2515-2523, doi:10.5194/amt-5-2515-2012, 2012.

2011年発表

(2015年2月24日更新)
1 Butz, A., Guerlet, S., Hasekamp, O., Schepers, D., Galli, A., Aben, I., Frankenberg, C., Hartmann, J.-M., Tran, H., Kuze, A., Keppel-Aleks, G., Toon, G., Wunch, D., Wennberg, P., Deutscher, N., Griffith, D., Macatangay, R., Messerschmidt, J., Notholt, J., and Warneke, T.: Toward accurate CO2 and CH4 observations from GOSAT, Geophys. Res. Lett., 38, L14812, doi:10.1029/2011GL047888, 2011.
2 Choi, J. H., and Um, J. S.: Comparative Evaluation among Different Kriging Techniques applied to GOSAT CO2 Map for North East Asia, Journal of Environmental Impact Assessment, 20, 879-890, 2011.
3 Emde, C., Buras, R., and Mayer, B.: ALIS: An efficient method to compute high spectral resolution polarized solar radiances using the Monte Carlo approach, J. Quant. Spectrosc. Ra., 112, 1622-1631, doi:10.1016/j.jqsrt.2011.03.018, 2011.
4 Frankenberg, C., Butz, A., and Toon, G. C.: Disentangling chlorophyll fluorescence from atmospheric scattering effects in O2 A-band spectra of reflected sun-light, Geophys. Res. Lett., 38, L03801, doi:10.1029/2010GL045896, 2011.
5 Frankenberg, C., Fisher, J. B., Worden, J., Badgley, G., Saatchi, S. S., Lee, J.-E., Toon, G. C., Butz, A., Jung, M., Kuze, A., and Yokota, T.: New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity, Geophys. Res. Lett., 38, L17706, doi:10.1029/2011GL048738, 2011.
6 Ishida, H., Nakjima, T. Y., Yokota, T., Kikuchi, N., and Watanabe, H.: Investigation of GOSAT TANSO-CAI Cloud Screening Ability through an Intersatellite Comparison, J. Appl. Meteo. Clim., 50, 1571-1586, doi:10.1175/2011JAMC2672.1, 2011.
7 Joiner, J., Yoshida, Y., Vasilkov, A. P., Yoshida, Y., Corp, L. A., and Middleton, E. M.: First observations of global and seasonal terrestrial chlorophyll fluorescence from space, Biogeosciences, 8, 637-651, doi:10.5194/bg-8-637-2011, 2011.
8 Kuze, A., O'Brien, D. M., Taylor, T. E., Day, J. O., O'Dell, C. W., Kataoka, F., Yoshida, M., Mitomi, Y., Bruegge, C. J., Pollock, H., Basilio, R., Helmlinger, M., Matsunaga, T., Kawakami, S., Shiomi, K., Urabe, T., and Suto, H.: Vicarious Calibration of the GOSAT Sensors Using the Railroad Valley Desert Playa, IEEE T. Geosci. Remote, 49, 1781-1795, doi:10.1109/TGRS.2010.2089527, 2011.
9 Miyazaki, K., Maki, T., Patra, P., and Nakazawa, T.: Assessing the impact of satellite, aircraft, and surface observations on CO2 flux estimation using an ensemble-based 4-D data assimilation system, J. Geophys. Res., 116, D16306, doi:10.1029/2010JD015366, 2011.
10 Morino, I., Uchino, O., Inoue, M., Yoshida, Y., Yokota, T., Wennberg, P. O., Toon, G. C., Wunch, D., Roehl, C. M., Notholt, J., Warneke, T., Messerschmidt, J., Griffith, D. W. T., Deutscher, N. M., Sherlock, V., Connor, B., Robinson, J., Sussmann, R., and Rettinger, M.: Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra, Atmos. Meas. Tech., 4, 1061-1076, doi:10.5194/amt-4-1061-2011, 2011.
11 Oda, T. and Maksyutov, S.: A very high-resolution (1 km x 1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights, Atmos. Chem. Phys., 11, 543-556, doi:10.5194/acp-11-543-2011, 2011.
12 Oguma, H., Morino, I., Suto, H., Yoshida, Y., Eguchi, N., Kuze, A., and Yokota, T.: First observations of CO2 absorption spectra recorded in 2005 using an airship-borne FTS (GOSAT TANSO-FTS BBM) in the SWIR spectral region, Int. J. Remote Sens., 32, 9033-9049, doi:10.1080/01431161.2010.535864, 2011.
13 Oshchepkov, S., Bril, A., Maksyutov, S., and Yokota, T.: Detection of optical path in spectroscopic space-based observations of greenhouse gases: Application to GOSAT data processing, J. Geophys. Res., 116, D14304, doi:10.1029/2010JD015352, 2011.
14 Palmer, P. I., Feng, L., and Bösch, H.: Spatial resolution of tropical terrestrial CO2 fluxes inferred using space-borne column CO2 sampled in different earth orbits: the role of spatial error correlations, Atmos. Meas. Tech., 4, 1995-2006, doi:10.5194/amt-4-1995-2011, 2011.
15 Parker, R., Boesch, H., Cogan, A., Fraser, A., Feng, L., Palmer, P. I., Messerschmidt, J., Deutscher, N., Griffith, D. W. T., Notholt, J., Wennberg, P. O., and Wunch, D.: Methane observations from the Greenhouse Gases Observing SATellite: Comparison to ground-based TCCON data and model calculations, Geophys. Res. Lett., 38, L15807, doi:10.1029/2011GL047871, 2011.
16 Shim, C., Nassar, R., and Kim, J.: Comparison of Model-Simulated Atmospheric Carbon Dioxide with GOSAT Retrievals, Asian Journal of Atmospheric Environment, 5, 263-277, doi:10.5572/ajae.2011.5.4.263, 2011.
17 Takagi, H., Saeki, T., Oda, T., Saito, M., Valsala, V., Belikov, D., Saito, R., Yoshida, Y., Morino, I., Uchino, O., Andres, R. J., Yokota, T., and Maksyutov, S.: On the Benefit of GOSAT Observations to the Estimation of Regional CO2 Fluxes, SOLA, 7, 161-164, doi:10.2151/sola.2011-041, 2011.
18 Wunch, D., Wennberg, P. O., Toon, G. C., Connor, B. J., Fisher, B., Osterman, G. B., Frankenberg, C., Mandrake, L., O'Dell, C., Ahonen, P., Biraud, S. C., Castano, R., Cressie, N., Crisp, D., Deutscher, N. M., Eldering, A., Fisher, M. L., Griffith, D. W. T., Gunson, M., Heikkinen, P., Keppel-Aleks, G., Kyrö, E., Lindenmaier, R., Macatangay, R., Mendonca, J., Messerschmidt, J., Miller, C. E., Morino, I., Notholt, J., Oyafuso, F. A., Rettinger, M., Robinson, J., Roehl, C. M., Salawitch, R. J., Sherlock, V., Strong, K., Sussmann, R., Tanaka, T., Thompson, D. R., Uchino, O., Warneke, T., and Wofsy, S. C.: A method for evaluating bias in global measurements of CO2 total columns from space, Atmos. Chem. Phys., 11, 12317-12337, doi:10.5194/acp-11-12317-2011, 2011.
19 Yates, E. L., Schiro, K., Lowenstein, M., Sheffner, E. J., Iraci, L. T., Tadic, J. M., and Kuze, A.: Carbon Dioxide and Methane at a Desert Site-A Case Study at Railroad Valley Playa, Nevada, USA, Atmosphere, 2, 702-714, doi:10.3390/atmos2040702, 2011.
20 Yoshida, Y., Ota, Y., Eguchi, N., Kikuchi, N., Nobuta, K., Tran, H., Morino, I., and Yokota, T.: Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite, Atmos. Meas. Tech., 4, 717-734, doi:10.5194/amt-4-717-2011, 2011.

2010年発表

(2014年10月8日更新)
1 Araki, M., Morino, I., Machida, T., Sawa, Y., Matsueda, H., Ohyama, H., Yokota, T., and Uchino, O.: CO2 column-averaged volume mixing ratio derived over Tsukuba from measurements by commercial airlines, Atmos. Chem. Phys., 10, 7659-7667, doi:10.5194/acp-10-7659-2010, 2010.
2 Butz, A., Hasekamp, O. P., Frankenberg, C., Vidot, J., and Aben, I.: CH4 retrievals from space-based solar backscatter measurements: Performance evaluation against simulated aerosol and cirrus loaded scenes, J. Geophys. Res., 115, D24302, doi:10.1029/2010JD014514, 2010.
3 Chevallier, F., Feng, L., Bösch, H., Palmer, P. I., and Rayner, P. J.: On the impact of transport model errors for the estimation of CO2 surface fluxes from GOSAT observations, Geophys. Res. Lett., 37, L21803, doi:10.1029/2010GL044652, 2010.
4 Eguchi, N., Saito, R., Saeki, T., Nakatsuka, Y., Belikov, D., and Maksyutov, S.: A priori covariance estimation for CO2 and CH4 retrievals, J. Geophys. Res., 115, D10215, doi:10.1029/2009JD013269, 2010.
5 Houweling, S., Aben, I., Breon, F.-M., Chevallier, F., Deutscher, N., Engelen, R., Gerbig, C., Griffith, D., Hungershoefer, K., Macatangay, R., Marshall, J., Notholt, J., Peters, W., and Serrar, S.: The importance of transport model uncertainties for the estimation of CO2 sources and sinks using satellite measurements, Atmos. Chem. Phys., 10, 9981-9992, doi:10.5194/acp-10-9981-2010, 2010.
6 Hungershoefer, K., Breon, F.-M., Peylin, P., Chevallier, F., Rayner, P., Klonecki, A., Houweling, S., and Marshall, J.: Evaluation of various observing systems for the global monitoring of CO2 surface fluxes, Atmos. Chem. Phys., 10, 10503-10520, doi:10.5194/acp-10-10503-2010, 2010.
7 Mazzoni, M., Falorni, P., and Verhoef, W.: High-resolution methods for fluorescence retrieval from space, Opt. Express, 18, 15649-15663, doi:10.1364/OE.18.015649, 2010.
8 McGarragh, G. and Gabriel, P.: Efficient computation of radiances for optically thin media by Padé approximants, J. Quant. Spectrosc. Ra., 111, 1885-1899, doi:10.1016/j.jqsrt.2010.03.011, 2010.
9 Nikitin, A., Lyulin, O., Mikhailenko, S., Perevalov, V., Filippov, N., Grigoriev, I., Morino, I., Yokota, T., Kumazawa, R., and Watanabe, T.: GOSAT-2009 methane spectral line list in the 5550-6236 cm-1 range, J. Quant. Spectrosc. Ra., 111, 2211-2224, doi:10.1016/j.jqsrt.2010.05.010, 2010.
10 O'Dell, C. W.: Acceleration of multiple-scattering, hyperspectral radiative transfer calculations via low-streams interpolation, J. Geophys. Res., 115, D10206, doi:10.1029/2009JD012803, 2010.
11 Ota, Y., Higurashi, A., Nakajima, T., and Yokota, T.: Matrix formulations of radiative transfer including the polarization effect in a coupled atmosphere-ocean system, J. Quant. Spectrosc. Ra., 111, 878-894, doi:10.1016/j.jqsrt.2009.11.021, 2010.
12 Polonsky, I. and O'Brien, D. M.: Rapid Estimation of Column-Averaged CO2 Concentration Using a Correlation Algorithm, J. Atmos. Ocean. Tech., 27, 2002-2016, doi:10.1175/2010JTECHA1487.1, 2010.
13 Sakaizawa, D., Nakajima, M., Sawa, Y., Matsueda, H., and Kawakami, S.: Ground-based demonstration of a CO2 remote sensor using a 1.57μm differential laser absorption spectrometer with direct detection, J. Appl. Remote Sens., 4, 043548-043548-17, doi:10.1117/1.3507092, 2010.
14 Sakuma, F., Bruegge, C. J., Rider, D., Brown, D., Geier, S., Kawakami, S., and Kuze, A.: OCO/GOSAT Preflight Cross-Calibration Experiment, IEEE T. Geosci. Remote, 48, 585-599, doi:10.1109/TGRS.2009.2026050, 2010.
15 Valsala, V. and Maksyutov, S.: Simulation and assimilation of global ocean pCO2 and air-sea CO2 fluxes using ship observations of surface ocean pCO2 in a simplified biogeochemical offline model, Tellus B, 62, 821-840, doi:10.1111/j.1600-0889.2010.00495.x, 2010.
16 Wang, L., Kassi, S., and Campargue, A.: Temperature dependence of the absorption spectrum of CH4 by high resolution spectroscopy at 81 K: (I) The region of the 2ν3 band at 1.66 μm, J. Quant. Spectrosc. Ra., 111, 1130-1140, doi:10.1016/j.jqsrt.2009.10.019, 2010.
17 Yoshida, Y., Oguma, H., Morino, I., Suto, H., Kuze, A., and Yokota, T.: Mountaintop observation of CO2 absorption spectra using a short wavelength infrared Fourier transform spectrometer, Appl. Optics, 49, 71-79, doi:10.1364/AO.49.000071, 2010.

2009年発表

(2014年10月8日更新)
1 Chevallier, F., Maksyutov, S., Bousquet, P., Bréon, F.-M., Saito, R., Yoshida, Y., and Yokota, T.: On the accuracy of the CO2 surface fluxes to be estimated from the GOSAT observations, Geophys. Res. Lett., 36, L19807, doi:10.1029/2009GL040108, 2009.
2 Corbin, K. D., Denning, A. S., and Parazoo, N. C.: Assessing temporal clear-sky errors in assimilation of satellite CO2 retrievals using a global transport model, Atmos. Chem. Phys., 9, 3043-3048, doi:10.5194/acp-9-3043-2009, 2009.
3 Feng, L., Palmer, P. I., Bösch, H., and Dance, S.: Estimating surface CO2 fluxes from space-borne CO2 dry air mole fraction observations using an ensemble Kalman Filter, Atmos. Chem. Phys., 9, 2619-2633, doi:10.5194/acp-9-2619-2009, 2009.
4 Hartmann, J.-M., Tran, H., and Toon, G. C.: Influence of line mixing on the retrievals of atmospheric CO2 from spectra in the 1.6 and 2.1 μm regions, Atmos. Chem. Phys., 9, 7303-7312, doi:10.5194/acp-9-7303-2009, 2009.
5 Hatta, S., Muranaka, T., Kim, J., Hosoda, S., Ikeda, K., Kurahara, N., Cho, M., Ueda, H. O., Koga, K., and Goka, T.: Accomplishment of multi-utility spacecraft charging analysis tool (MUSCAT) and its future evolution, Acta Astronaut., 64, 495-500, doi:10.1016/j.actaastro.2008.07.023, 2009.
6 Ishida, H. and Nakajima, T. Y.: Development of an unbiased cloud detection algorithm for a spaceborne multispectral imager, J. Geophys. Res., 114, D07206, doi:10.1029/2008JD010710, 2009.
7 Kadygrov, N., Maksyutov, S., Eguchi, N., Aoki, T., Nakazawa, T., Yokota, T., and Inoue, G.: Role of simulated GOSAT total column CO2 observations in surface CO2 flux uncertainty reduction, J. Geophys. Res., 114, D21208, doi:10.1029/2008JD011597, 2009.
8 Kuze, A., Suto, H., Nakajima, M., and Hamazaki, T.: Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring, Appl. Optics, 48, 6716-6733, doi:10.1364/AO.48.006716, 2009.
9 Lyulin, O. M., Nikitin, A. V., Perevalov, V. I., Morino, I., Yokota, T., Kumazawa, R., and Watanabe, T.: Measurements of N2- and O2-broadening and shifting parameters of methane spectral lines in the 5550-6236 cm-1 region, J. Quant. Spectrosc. Ra., 110, 654-668, doi:10.1016/j.jqsrt.2009.02.012, 2009.
10 Nikitin, A. V., Mikhailenko, S., Morino, I., Yokota, T., Kumazawa, R., and Watanabe, T.: Isotopic substitution shifts in methane and vibrational band assignment in the 5560-6200 cm-1 region, J. Quant. Spectrosc. Ra., 110, 964-973, doi:10.1016/j.jqsrt.2009.02.016, 2009.
11 Ohyama, H., Morino, I., Nagahama, T., Machida, T., Suto, H., Oguma, H., Sawa, Y., Matsueda, H., Sugimoto, N., Nakane, H., and Nakagawa, K.: Column-averaged volume mixing ratio of CO2 measured with ground-based Fourier transform spectrometer at Tsukuba, J. Geophys. Res., 114, D18303, doi:10.1029/2008JD011465, 2009.
12 Saitoh, N., Imasu, R., Ota, Y., and Niwa, Y.: CO2 retrieval algorithm for the thermal infrared spectra of the Greenhouse Gases Observing Satellite: Potential of retrieving CO2 vertical profile from high-resolution FTS sensor, J. Geophys. Res., 114, D17305, doi:10.1029/2008JD011500, 2009.
13 Yokota, T., Yoshida, Y., Eguchi, N., Ota, Y., Tanaka, T., Watanabe, H., and Maksyutov, S.: Global Concentrations of CO2 and CH4 Retrieved from GOSAT: First Preliminary Results, SOLA, 5, 160-163, doi:10.2151/sola.2009-041, 2009.

2008年発表

(2014年2月3日更新)
1 Bril, A., Oshchepkov, S., and Yokota, T.: Correction of atmospheric scattering effects in space-based observations of carbon dioxide: Model study of desert dust aerosol, J. Quant. Spectrosc. Ra., 109, 1815-1827, doi:10.1016/j.jqsrt.2008.02.012, 2008.
2 Eguchi, N. and Yokota, T.: Investigation of clear-sky occurrence rate estimated from CALIOP and MODIS observations, Geophys. Res. Lett., 35, L23816, doi:10.1029/2008GL035897, 2008.
3 Oshchepkov, S., Bril, A., and Yokota, T.: PPDF-based method to account for atmospheric light scattering in observations of carbon dioxide from space, J. Geophys. Res., 113, D23210, doi:10.1029/2008JD010061, 2008.
4 Toyoda, K., Masui, H., Muranaka, T., Cho, M., Urabe, T., Miura, T., Kawakita, S., Gonohe, Y., and Kikuchi, T.: ESD Ground Test of Solar Array Coupons for a Greenhouse Gases Observing Satellite in PEO, IEEE T. Plasma Sci., 36, 2413-2424, doi:10.1109/TPS.2008.2002823, 2008.
5 Valsala, V., Maksyutov, S., and Ikeda, M.: Design and Validation of an Offline Oceanic Tracer Transport Model for a Carbon Cycle Study, J. Climate, 21, 2752-2769, doi:10.1175/2007JCLI2018.1, 2008.

2007年発表

(2014年2月3日更新)
1 Eguchi, N., Yokota, T., and Inoue, G.: Characteristics of cirrus clouds from ICESat/GLAS observations, Geophys. Res. Lett., 34, L09810, doi:10.1029/2007GL029529, 2007.