

1

Estimating global carbon fluxes with GOSAT observations

Shamil Maksyutov (NIES)

Basic procedure for standard GOSAT Level 4 product: Estimations of monthly CO₂ regional fluxes by using existing surface network and GOSAT observations.

Expected GOSAT data and its use in flux estimation
Inverse estimation with total column CO₂ data

- ◆ Inverse model estimates of the flux uncertainty
- Summary

Inverse model of the regional CO_2 fluxes.

Problem: x - TF = minx concentration, F fluxes, T - transport matrix

Flux solution: $\mathbf{F} = \mathbf{F}_{0} + [\mathbf{T}^{T} \mathbf{C}_{\mathbf{x}}^{-1} \mathbf{T} + \mathbf{C}_{\mathbf{F}0}^{-1}]^{-1} \mathbf{T}^{T} \mathbf{C}_{\mathbf{x}}^{-1} [\mathbf{x} - \mathbf{T} \mathbf{F}_{0}]$ (2')

Flux error covariance: $C_F = [C_{F0}^{-1} + T^T C_x^{-1} T]^{-1}$

Inverse model fluxes, with 64 region model

left model grid, right region average

CO2 flux uncertainties (GtC/year) without using GOSAT data

Estimated: monthly mean flux uncertainties for each region during 1 year (flux climatology)

5

GOSAT simulation

Monthly mean (July) CO₂ concentration along GOSAT orbit, with global offset subtracted

Average number of observations per month and monthly mean cloud cover

Regional CO2 flux uncertainties

Mean regional flux uncertainty (relative to surface network) against the precision of column CO2 data.

Summary

Evaluation of the expected contribution by GOSAT CO2 observations

- Inverse model was used to estimated CO2 flux uncertainty reduction due to use of the CO2 (column average) observations with TANSO-FTS (SWIR) sensor on GOSAT. Realistic cloud frequency and orbit are used in estimation
- Conclusion: average 50% flux uncertainty reduction is possible for many regions to achieve if the systematic retrieval error is kept below 0.5 ppm and single shot random error of 2.5 ppm (0.6%)