

GOSAT TANSO-FTS TIR (Band 4) data analysis method

Ryoichi Imasu, Naoko Saitoh, and Yosuke Niwa

(Center for Climate System Research (CCSR), The University of Tokyo)

GOSAT sensors

CO₂ retrieval from spectrum data measured from space

European group led by Dr. Chedin HIRS: Chedin et al., 2002a, 2002b, 2003a, 2003b, AIRS: Crevoisier et al., 2004, Chevallier et al., 2005, Engelen et al., 2004, 2005 and AIRS group led by Dr. Chahine Chahine et al., 2008, 2005(VPD), Maddy et al. (2008), Aumann et al., 2005, Engelen et al., 2004

have successfully obtained global maps of CO_2 in the upper troposphere from the thermal infrared spectrum.

<u>Next target</u> :

Information on <u>vertical structure</u> of CO_2 , particularly on CO_2 concentration in <u>PBL</u>

→ Synergetic usage of GOSAT FTS bands (SWIR, TIR) is effective ••• benefit of GOSAT sensors !

inter-annual variation of CO₂ at various height

Calculation of Jacobian

1. Optimization of layer thickness of "retrieval grid"

In order to obtain uniform sensitivity and retrieval error, layer thickness have to be optimized

- \rightarrow Radiative transfer cal. at "full grid" (finest grid)
- → Determining layer thickness based on "Area value" of averaging kernel
- \rightarrow "Linear-mapping" : "retrieval grid" $\leftarrow \rightarrow$ "full grid"

2. Selecting retrieval channels

In order to reduce the effects of temperature estimation error, spectral channel that are used for retrieval have to be selected

 \rightarrow Channel selection based on "Shannon information contents"

"full grid" ↔ "reduced grid"

Liner-mapping between state (x) and retrieval (z) vectors is

x = Wz x : state vector z = W^{*}x ^{z : retrieval vector}

The (*i*+1)-th concentration, X_{i+1} , is X_{i+1} = $W^*X_a + (W^TK_i^TS_e^{-1}K_iW + (W^*SW^{*T})^{-1})^{-1}W^TK_i^TS_e^{-1}(Y - F(X_i) + K_iW(W^*x_i - W^*x_a))$

Total retrieval error is

 $\hat{S} = (W^{T}K^{T}S_{e}^{-1}KW + (W^{*}S_{a}W^{*T})^{-1})^{-1}$

Retrieval without T uncertainties

⁽by Naoko Saitoh)

Retrieval channel selection

Appropriate retrieval channels should be selected to reduce the effect of T uncertainties on retrieved CO₂ concentrations.

According to Shannon's information theory [Shannon and Weaver, 1949], information contents of CO₂ and temperature,

$$I = \frac{1}{2} \log_2 |S_a| - \frac{1}{2} \log_2 |\hat{S}| \qquad I = \frac{1}{2} \log_2 |S_{temp}| - \frac{1}{2} \log_2 |\hat{S}|$$

[e.g., Rodgers 1996; Lerner et al., 2002]

Temperature errors regarded as a measurement noise,

$$S_e = S_e + K_{temp} S_{temp} K_{temp}^T$$

[Rodgers 2000; Ota, 2006]

Channels sensitive to CO₂ are different from those to T.

In order to reduce the retrieval error down to 1 %, "averaging" is <u>necessary</u>

Assumption:

- •Temp. estimation error : random
- •CO₂ variation : systematic

```
(e.g., Engelen et al., 2002)
```

<u>Averaging causes degradation of vertical and temporal structure</u> of CO₂ distribution retrieved

Simulation:

How degraded by averaging even if <u>the best performance</u> of retrieval can be achieved.

Convolving original profile with "Averaging Kernel", then averaging spatially and temporally.

General circulation model: NICAM (Nonhydrostatic ICosahedral grid Model)-based CO₂ transport model (developed by Mr. Yosuke Niwa)

NICAM was originally developed by Prof. Satoh and Dr. Tomita

Advantages

- High-resolution
 - No polar problem
- Mass conservation
 - Tracer advection is consistent with continuity
 - Tracer masses are completely conserved without a mass fixer
- Easier to develop a nest generation inverse model

Icosahedral grid

Schemes and setting parameters

- Horizontal resolution: glevel-5 (dx~240km)
- Vertical layer: 54 layers
- Advection scheme : Miura2004 scheme (no limiter version)
- Cumulus convection scheme : simplified prognostic Arakawa-Schubert
- Vertical diffusion scheme : Mellor-Yamada 2 with modification by Smith (1990)

GCM based CO₂ transport mode, NICAM-CO₂

NICAM (Nonhydrostatic ICosahedral Atmospheric Model)

Seasonal variation of surface CO₂ concentration

NICAM grid (glevel-5:dx~240km)

Surface fluxes

- NEP flux derived from CASA model
- Fossil fuel (CDIAC)
- Air-sea change (Takahashi et al., 2002)

CO₂ concentration (original)

Original

(4 times/day)

Convolved with Averaging kernel before averaging

<u>CO₂ concentration (retrieved-averaged)</u>

(spatially averaged: $4.5^{\circ} \times 4.5^{\circ}$; temporally: 15 days)

(4 times/day)

Cloud Fraction in GCM grids (NICAM-CO₂ model output)

Cloud Fraction in GCM grids (NICAM-CO₂ model output)

<u>Cloud Fraction in GCM grids (NICAM-CO₂ model output)</u>

Cloud screening

	Band	IFOV	Cloud/aerosol propertie	es	_
FTS	0.76 µ m		Surf. Press., Cloud top		
	1.6 µ m	10.5 km	CO_2		<u>Day/Night</u>
	2.0 μm 5.5-14μm		Cirrus clouds Cloud top height, Opt. thickness (8-10, 1 Ice/liquid water (11-13 Cirrus clouds (11-13 μ	1-13 μ m), 8 μ m) m)	 Slicing method (Z, Frac. cov. Split window method Cloud score approach Adiabatic lapse rate analysis based on the retrieve temp.
<u>CAI</u>	380nm 670nm 870nm	0.5 km	Absorbing aerosols Optical thickness Optical thickness, Ice/Vegetation Ice/liquid water	FTS I	FOV m <u>CAI IFOV</u> <u>1.6μm</u> <u>1.5km</u> 0.38, 0.67, 0.87μm 0.5km
	Fractional c can be estir	cloud cove nated at ~	rage in FTS-IFOV		

Summary

Retrieval method

- •Temp. data : Meteorological analysis data (sonde: land, MW: ocean)
- "Area value of averaging kernel" \rightarrow layer thickness \rightarrow uniform sensitivity and error
- "Shannon information contents" \rightarrow channel selection \rightarrow reduction temp. error

<u>CO₂ distribution feature that will be retrieved by TANSO-FTS (TIR)</u>

- •What we want to retrieve with TANSO-FTS (TIR) is •••
- •Degrading of fine structure due to spatially and temporally averaging was estimated
- •Clear sky probability = $\sim 10\%$ or less
- •Detailed simulations considering cloud coverage have been continued using GOSAT-Sim (TIR) for source/sink inversion of CO₂

Synergetic usage of GOSAT sensor data

- •Cloud screening based on CAI, SWIR(2μ m), and TIR
- •Estimation of CO₂ in the boundary layer (PBL) : "Lower = column upper"
- •Usage of columnar data for retrieving profiles "as an additional constraint" or "scaling after retrieval"