## Workshop on the Data Utilization of Greenhouse Gases Observing Satellite (GOSAT)

BU

## Outline of GOSAT Spacecraft and TANSO Sensor November 5, 2008

Takashi Hamazaki Project Manager GOSAT Project Team

Japan Aerospace Exploration Agency





# 1. GOSAT OVERVIEW



GOSAT is;

The <u>Greenhouse gases Observing SAT</u>ellite.

A satellite to monitor global distribution of Greenhouse Gases (GHG);

Carbon dioxide and Methane at 100-1000km spatial scale

with relative accuracy of 0.3-1% (1-4ppm) for CO2 and 0.6-2% (10-34ppb) for CH4

### A joint project of

JAXA (Japan Aerospace Exploration Agency),

MOE (Ministry of the Environment) and

NIES (National Institute for Environmental Studies).

 Scheduled to be launched by Japan's H-IIA launch vehicle in early 2009 from Tanegashima Space Center
 Recently named as "IBUKI"



## 

GOSA

**Observing SATelli** 

Acomposited moust accomposited in

#### GOSAT

\*

Globa frequent observatio ≩ single





COSAT is the joint project of Environment) and NIES (Nation Environmental Studies).

Sensor Development
(Partial Funding Support)
Data use for Policy
Development

- Algorithms development
- Data use for science

MOE

- Data processing(L2-4)
- Validation

Scientific Advisory

nsor develo

lite devel

JAXA

GOSAT

Science

Team

Workshop on the Data Utilization of Greenhouse Gases Observing Satellite November 5,20084

NIES

| Size      | Main        | 1.8m x 2.0m x 3.7m           |              |
|-----------|-------------|------------------------------|--------------|
|           | body        | (Wing Span 13.7m)            |              |
| Mass      | Total       | 1,750kg                      |              |
| Power     | Total       | 3.8KW                        |              |
| Life Span |             | 5 years                      | M            |
| Orbit     | sun         | synchronous orbit            | T I I I HEA  |
|           | Local time  | 13:00+/-0:15(Descending)     |              |
|           | Altitude    | 666km                        |              |
|           | Inclination | 98deg                        |              |
|           | Re-visit    | 3 days                       |              |
| Launch    | Vehicle     | H-IIA                        |              |
|           | Schedule    | Jan. 21 <sup>st</sup> , 2009 | H-IIA Launch |
|           | -           |                              | Vehicle      |

Japan Aerospace Exploration Agency

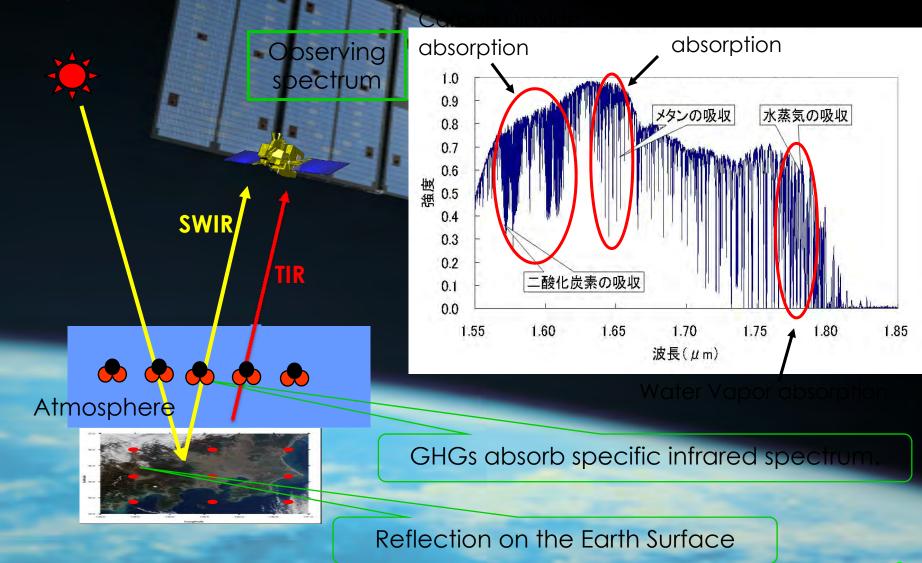
GOSAT

**Observing SATellit** 

## **GOSAT** on orbit



TANSO=<u>T</u>hermal <u>And Near infrared Sensor</u> for carbon <u>Observation</u>


### TANSO-FTS (Fourier Transform Spectrometer)

TANSO-CAI (Cloud and Aerosol Imager)

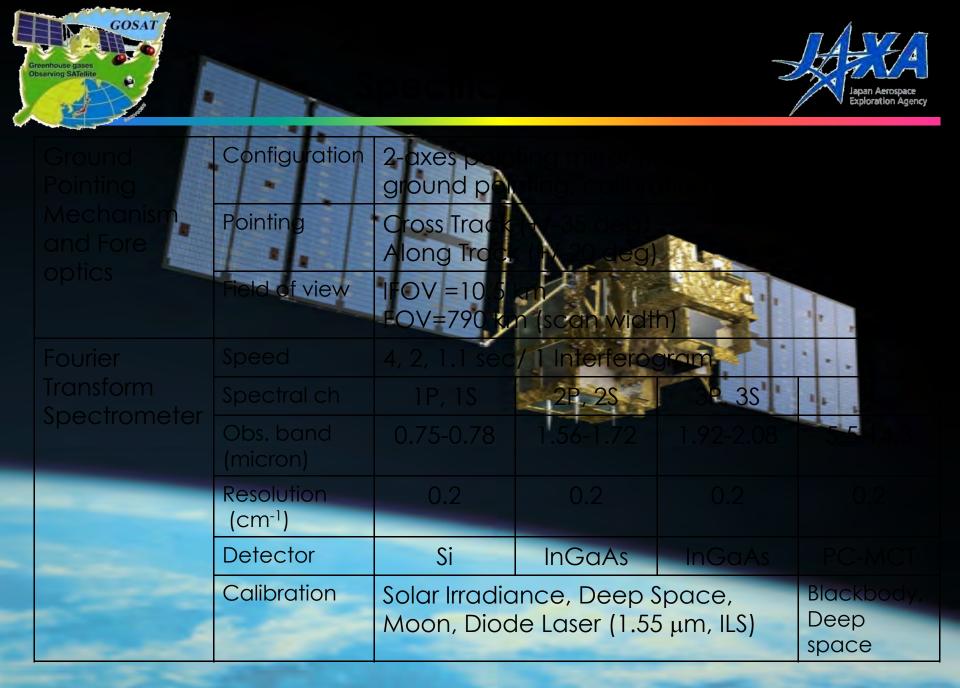
**Principle of the Observation** 

GOSA

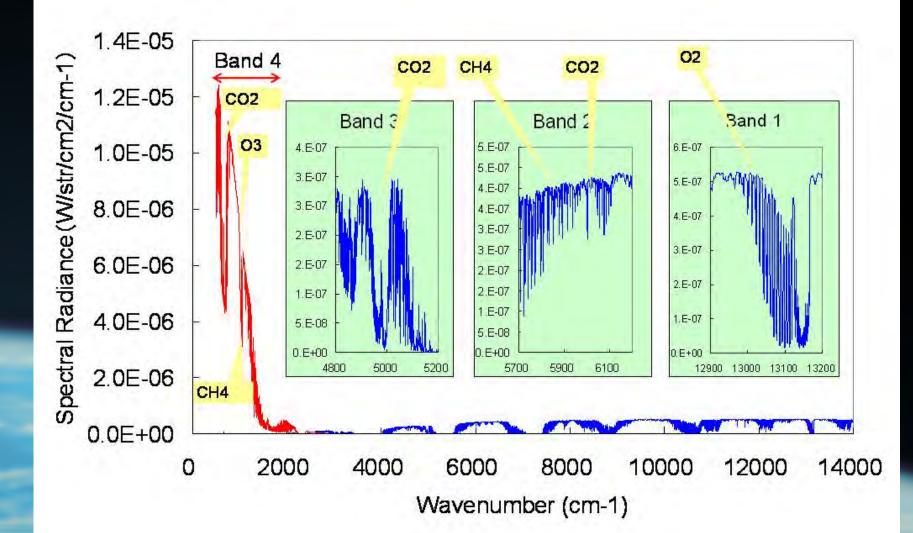







M1

GOSAT

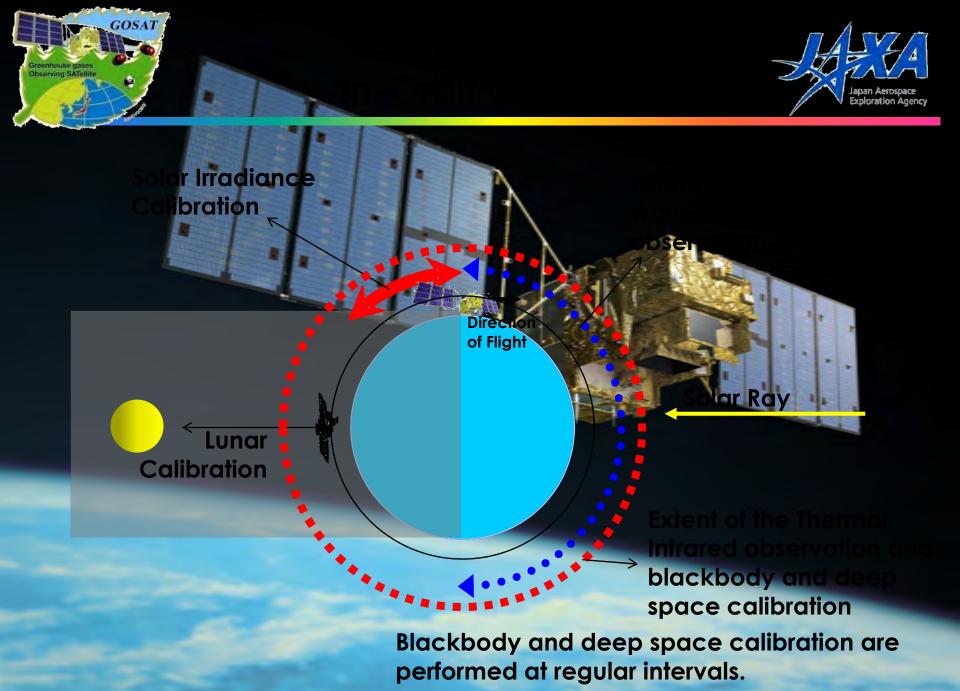

Output from detector =interferogram

moving mirror

ALL D



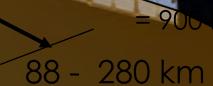





GOSA






| Ope                 | aration mode                    | E E Descriptor                                                                                                                                                                                                                                                                                                                                                |
|---------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | n day time                      | Observation in the short wave en and interest based                                                                                                                                                                                                                                                                                                           |
|                     | night time                      | Observation in the thermal in the sound leave to be the space calibration                                                                                                                                                                                                                                                                                     |
|                     |                                 | The operation of thermal infrared oper reation is suspended and me<br>mechanism is locked and TATLSO-CAT is assumed as set to the All off me<br>(In case of a failure of one of the solar pacifies or other similar events)<br>* The observation time is limited to ten minutes per orbit, and the sensor is set<br>Standby II mode for the rest of the time. |
| Specific<br>observ. | Sunglint<br>observation         | Observation of the sunglint points according to the commands.                                                                                                                                                                                                                                                                                                 |
|                     | Specific points observation     | Observation of the specified points according to the commands.<br>"Specific points" include lakes, validation sites, ground-based CO2 observatories etc.                                                                                                                                                                                                      |
| Calibration mode    | Lunar calibration               | Calibration using the moon in the SWIR bands once a year, as necessary. This calibration is performed by rotating GOSAT to point to the moon and orienting the sensor's FOV toward the moon using the pointing mechanism.                                                                                                                                     |
|                     | Solar irradiance<br>calibration | Calibration using the solar irradiance for every orbit when the satellite is in sunlight<br>and the ground surface is in shade. This calibration takes place at rise of the sun.                                                                                                                                                                              |
|                     | Instrument function calibration | Calibration of the instrument function by irradiating a 1.55 $\mu$ m wavelength semiconductor laser light.                                                                                                                                                                                                                                                    |
|                     | Electrical calibration          | Calibration of the signal processing in the analogue signal processor and beyond, by inputting a reference voltage signal.                                                                                                                                                                                                                                    |





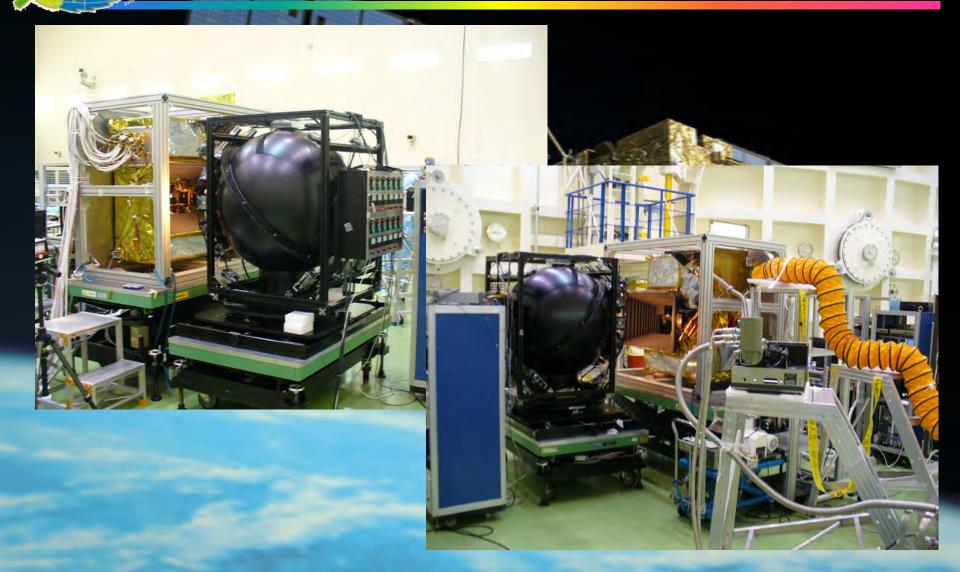


| Footorint              | Cross-<br>track<br>pattern | Distance<br>bet. points | Exposure<br>(sec) |
|------------------------|----------------------------|-------------------------|-------------------|
|                        | 1                          | 790 km                  | 4x3               |
| FTS IFOV=10.5 km ///// | 3                          | 260 km                  | 4x3               |
|                        | 5                          | 160 km                  | 4                 |
|                        | 7                          | 110 km                  | 2                 |
|                        | 9                          | 88 km                   | 1                 |
|                        |                            |                         | *                 |



**Cross Track** 

### Along Track




**Regular Observation Pattern** (5 points in the cross-track direction) Observaton Pattern Workshop on the Data Utilization of Greenhouse Gases Observing Satellite November 5,2008 5-

GOSA

**Specific Points Observaton Pattern** 





GOSA

ne o





#### - The proportion of the minimum sensitive

est

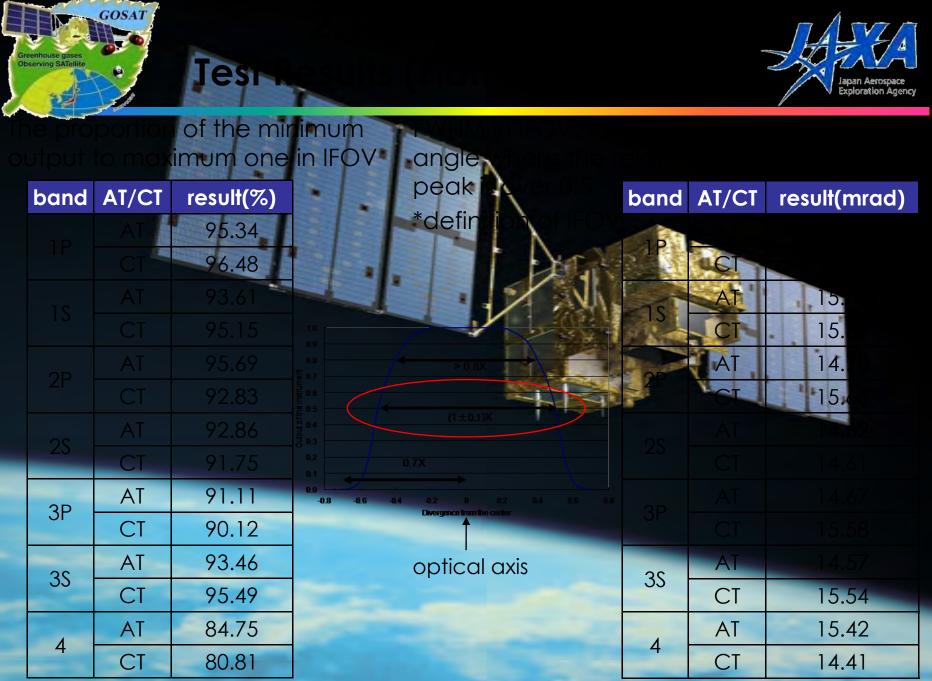
| band | 1    |      | 2    |      | 3    |       | 4                                 |
|------|------|------|------|------|------|-------|-----------------------------------|
|      | Р    | S    | Р    | S    | Р    | S     |                                   |
|      | 93.0 | 92.2 | 92.8 | 85.9 | S.E. | JI.91 | 46.3(700-140-<br>28.6(1400-1800cr |
|      |      |      |      |      |      |       |                                   |

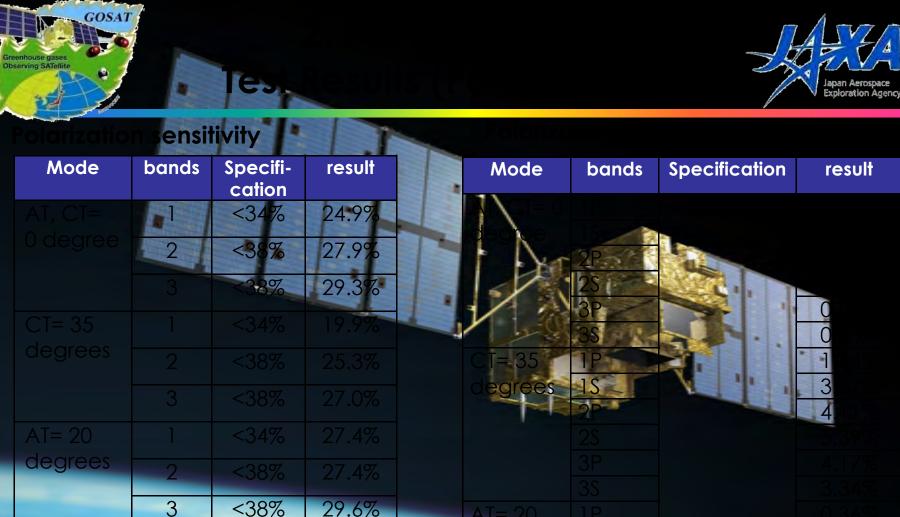
#### - The out of band characteristics

| band                   | 1      |        | 1 2 3  |        | 3      |        | 4     |        |
|------------------------|--------|--------|--------|--------|--------|--------|-------|--------|
| out of<br>band<br>(µm) | <0.746 | >0.787 | <1.471 | >2.000 | <1.812 | >2.222 | <5.56 | >14.29 |
| results<br>(%)         | <0.1   | <0.1   | <0.1   | <0.1   | <0.1   | <0.1   | <0.1  | <0.1   |






|       | State State                             |                                                                        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |      |          |
|-------|-----------------------------------------|------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|------|----------|
| bands | Wave-<br>length*<br>(cm <sup>-1</sup> ) | Spectral<br>radiance*<br>(W/cm <sup>2</sup> /sr<br>/cm <sup>-1</sup> ) | result |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gain     | H     | Μ    | L        |
| 1P    | 13050                                   | 5.5e-7                                                                 | 345    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) in     | 9.62  | 871  |          |
|       |                                         |                                                                        | 246    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 251      | >10-> | >10  | 9.79     |
|       |                                         |                                                                        | 322    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20<br>3P | 8.98  | 9.02 | 7.85     |
|       |                                         |                                                                        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39       | 8.18  | 8.64 | 7.85     |
|       |                                         | 3.8e-7                                                                 |        | Part of the second seco |          |       | 0.04 | NA       |
| 35    |                                         |                                                                        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ne outp  |       |      | he moxin |
| 4     | 700                                     | 280K                                                                   | 283    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |      |          |


\* The specification is defined at these value

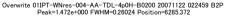
ke:

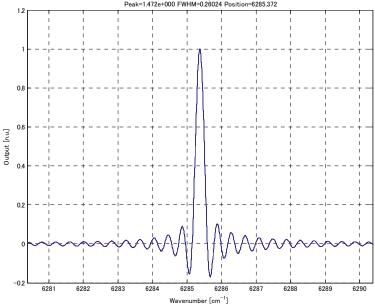
Gain Spectral radiance (W/cm<sup>2</sup>/sr/cm<sup>-1</sup>)

|   | Band 1 | Band 2 | Band 3 | Band 4 |
|---|--------|--------|--------|--------|
| Н | 5.5e-7 | 5.2e-7 | 3.8e-7 | NA     |
| М | 1.8e-6 | 1.7e-6 | 1.3e-6 | 340K   |
| L | 5.5e-6 | 5.2e-6 | 3.8e-6 | NA     |






Polarization Sensitivity=  $\frac{P-S}{P+S}$ 






### Instrument function FWHM

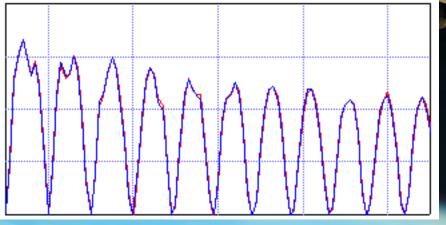
| band         | Band 1 |       | Band 2 |       | Band 3 |       | Band 4 |
|--------------|--------|-------|--------|-------|--------|-------|--------|
| polarization | Р      | S     | Р      | S     | Р      | S     | 0.04/  |
| FWHM(cm-1)   | 0.367  | 0.356 | 0.258  | 0.257 | 0.262  | 0.263 | 0.246  |





Example of the interferogram-Band 2






 The light through the gas cell filled FOV of FTS.

(2) The strong light source was set ard

(3) It was compared that the cases w turned on and off.

The difference between two cases w



rone

The test result of the stray light:

the red line shows the case that the light source was turned off, the blue line shows the case that the light source was turned on.





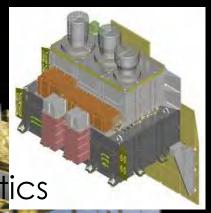
The stability of the sensitivity to the object measured in the thermal and vacuum. The output under the high temperature under the nominal temperature mode was calculated.

Result

The maximum change of the sensitivity per degree C is 0.365 % and the change of the temperature of the optical bench where the optics are placed is estimated under 0.5 degree C per one revolution.

Therefore the change of the sensitivity is under 0.18 %.

| The stability of the sensitivity (78) per degree C |         |           |         |           |         |           |  |  |  |
|----------------------------------------------------|---------|-----------|---------|-----------|---------|-----------|--|--|--|
| band                                               | 1       |           | d 1 2   |           |         | 3         |  |  |  |
|                                                    | primary | redundant | primary | redundant | primary | redundant |  |  |  |
| Р                                                  | 0.365   | 0.364     | -0.315  | -0.310    | -0.003  | -0.023    |  |  |  |
| S                                                  | 0.189   | 0.196     | -0.325  | -0.326    | -0.101  | -0.111    |  |  |  |


#### the stability of the sensitivity (%) per degree C



## **Specifications**



ANSO-CAL is operated to compare the second spatial distribution of the second spatial distribution of the second coverage
 retrieve scattering spectrol characteristics



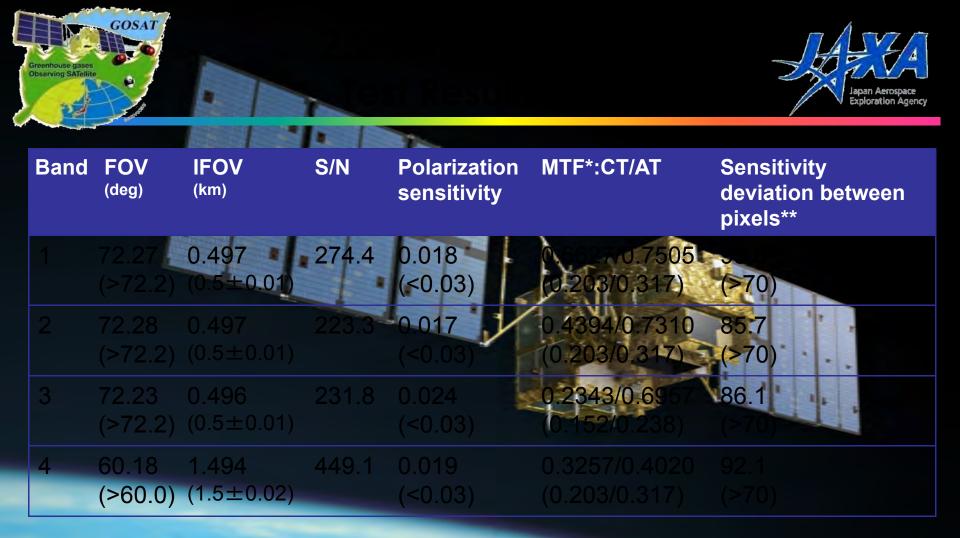
of aerosol

| Band | Observation  | Center 🏹           | FOV | FOV  | No of P |
|------|--------------|--------------------|-----|------|---------|
| No.  | Band<br>(nm) | Wavelength<br>(nm) |     |      |         |
| 1    | 372-387      | 380                | 0.5 |      |         |
| 2    | 667-680      | 678                | 0.5 | 1000 | 2000    |
| 3    | 866-877      | 870                | 0.5 | 1000 | 2000    |
| 4    | 1560-1640    | 1620               | 1.5 | 750  | 500     |



### **Operation Mode**




| Operation m               | ode                       | Description                                                                                                                                                                                                           |
|---------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Observati <mark>on</mark> | mode                      | Observation of all ands                                                                                                                                                                                               |
| Calibration<br>mode       | Lunar<br>calibration      | Calibration using the moon and performed,<br>year, as necessary. This calibration is performed,<br>rotating GOS, It is point to the moon and orienting<br>the sensor's FOV toward the moon simultaneously<br>with FTS |
|                           | Electrical<br>calibration | reference voltage signal                                                                                                                                                                                              |
|                           | Night time<br>calibration |                                                                                                                                                                                                                       |





## OBSERVATION WAVELENGTH

| band                                  | 1                                            | 2                            | 3                       | 4               |
|---------------------------------------|----------------------------------------------|------------------------------|-------------------------|-----------------|
| center<br>wavelength(µm)              | 0.3783<br>(0.380±0.005)                      | 0.6734 (0.674= 0.003)        | 0.8720<br>(0.870±0.005) | (1.00           |
|                                       | 0.018<br>(<0.02)                             | 0.015<br>(<0.02)             | 0.014                   | 0.086<br>(<0.1) |
| out of band<br>characteristics<br>(%) | 0.02(<0.360)<br>0.07(>0.400)<br>0.01(>0.700) | 0.27(<0.658)<br>0.05(>0.692) | 0.05(<0.840)            | 0.23(<1.        |



The bracketed value are specification.

\*MTF is the value at the nadir

\*\* the output of the minimum output pixel when the output of the maximum output pixel is normalized to 100.





## Dynamic Range

## Spectral radiance (W/m²/sr/µm)

| aoin |        |        |        |        |  |
|------|--------|--------|--------|--------|--|
| gain | band 1 | band 2 | band 3 | band 4 |  |
|      | 155    | 212    |        | 35     |  |
|      | 208    | 445    | 291    | 68     |  |
|      |        |        | 7,77   | 201    |  |
|      |        |        |        |        |  |

#### MTF

| band   | 1     |       | 2     |       | 3     |       | 4     |       |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|
|        | CT    | AT    | CT    | AT    | СТ    | AT    |       | AT    |
| edge   | 0.619 | 0.755 | 0.295 | 0.623 | 0.194 | 0.511 |       |       |
| center | 0.663 | 0.751 | 0.439 | 0.731 | 0.234 | 0.696 | 0.326 | 0.402 |
| edge   | 0.661 | 0.763 | 0.313 | 0.641 | 0.194 | 0.333 | 0.257 | 0.399 |





## legistration between ban

| Band | СТ              |        |                 | AT              |        |                 |  |
|------|-----------------|--------|-----------------|-----------------|--------|-----------------|--|
|      | edge<br>(-side) | center | Edge<br>(+side) | edge<br>(-side) | center | Edge<br>(+side) |  |
|      |                 | 0.168  | 0.5             | 0.046           | -0.028 | -0.028          |  |
| 2    | -0.144          |        | 0.982           | -0.376          | 0.219  | -0.098          |  |
| 3    | 0               | 0      |                 |                 |        |                 |  |
| 4    | 0.095           | 0.125  | -0.122          | -0.006          | -0.096 | -0.120          |  |

\*relative value to the band 3





The pre-launch calibration of TANSO was radiance, geometry and spectral charac The following items were evaluated as the

|     | items                            | equipment used for the evaluation                |
|-----|----------------------------------|--------------------------------------------------|
|     | instrument function              | Integrated sphere (Arlamp),<br>Tunable laser     |
|     | sensitivity                      | -fixed point blackbody and<br>integrating sphere |
|     |                                  |                                                  |
|     | IFOV(flatness of the sensitivity |                                                  |
|     | in the pixel)                    |                                                  |
| CAI | sensitivity                      | -fixed point blackbody                           |
|     | bandwidth                        | -monochromator and collimator                    |
|     | Registration between bands       | -collimator                                      |





